Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle powers spearing mantis shrimp attacks

22.11.2012
Spearing mantis shrimp attacks powered by muscle instead of ballistics

A hungry mantis shrimp may be the last thing that a passing fish sees before it is snatched from the water by the predator. Maya deVries from the University of California, Berkeley, says 'Spearer mantis shrimps stay in their sandy burrows and they wait for a fast-moving prey item to come by, but then they come out of nowhere and grab the prey with their long skinny appendages.'

However, little was know about how these vicious predators unleash their lightning-fast attacks. According to deVries, the spearing shrimp are closely related to smasher mantis shrimps, which pulverise the shells of crustaceans and molluscs with a single explosive blow from their mighty claws. Having decided to find out how the crustaceans unleash their deadly assaults, deVries says, 'We thought that the spearers would be just as fast – if not faster – than the smashers because they have a smaller time window in which to capture their prey.' deVries and her colleagues publish their discovery that Lysiosquillina maculata spearer mantis shrimps power their mighty spears with muscle alone while smaller Alachosquilla vicina spearer mantis shrimps use a more conventional catapult mechanism in The Journal of Experimental Biology at http://jeb.biologists.org.

Working with her PhD advisor, Sheila Patek, deVries took a short trip along the corridor to Roy Caldwell's lab to film some of his L. maculata mantis shrimps. Coaxing the nocturnal lobster-sized crustaceans to assault frozen prawns, deVries recalls that the animals were reluctant to attack; 'They probably didn't like the bright lights', she says. However, when the duo analysed the speed of the strikes, they were surprised that the spearer's harpoon speed was much slower than that of their smashing cousin's. Explaining that smashers can unleash strikes at speeds ranging from 10 to 23m/s, the duo were taken aback that L. maculata could only muster 2 m/s.

Smasher mantis shrimp store catapult energy in skeletal springs that they unleash during a deadly assault; therefore deVries analysed the trajectories of several L. maculata claws in action, and realised that the hefty crustaceans were not using the same mechanism. 'The spear has all the same components [as the smashers]', explains deVries, but she adds that the shape of some of the structures are subtly different and the spring did not deform to store energy prior to an attack – possibly because it is too stiff – preventing L. maculata from firing a ballistic attack. 'If the L. maculata movement is similar to other ambush predators that have muscle-driven strikes, it is possible that these guys are creating strikes with muscle movement', says deVries.

Next, deVries and Patek tested the reactions of another, smaller mantis shrimp, Alachosquilla vicina, to find out whether all spearing mantis shrimps have opted for muscle-powered strikes. Elizabeth Murphy filmed the animals snapping up brine shrimp however, it was obvious that the diminutive crustaceans were using a spring-loaded catapult to spear their nimble prey. The team could clearly see energy-storing deformations in the spring structure before the mantis shrimp unfurled their deadly assaults at 6m/s.

But the team were still puzzled by L. maculata's sluggish performance. Maybe the lab-based animals had become too unfit to produce explosive attacks? Traveling to Australia to film L. maculata hunting in the wild, the team were relieved to see that the animals' reactions were well within the range of speeds that they had measured in the lab. Adult L. maculata use muscle-powered attacks all the time.

Having confirmed that it is possible for the large shrimp to produce lightening-fast strikes without using a spring mechanism, deVries says 'We're trying to get more L. maculata in the lab to look at the complete size range in one species to see how the strike scales and to find out if there is a size threshold above which you can't have a spring-loaded strike anymore.'

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org/content/215/24/4374.abstract

REFERENCE: deVries, M. S., Murphy, E. A. K. and Patek, S. N. (2012). Strike mechanics of an ambush predator: the spearing mantis shrimp. J. Exp. Biol. 215, 4374-4384.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>