Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle powers spearing mantis shrimp attacks

22.11.2012
Spearing mantis shrimp attacks powered by muscle instead of ballistics

A hungry mantis shrimp may be the last thing that a passing fish sees before it is snatched from the water by the predator. Maya deVries from the University of California, Berkeley, says 'Spearer mantis shrimps stay in their sandy burrows and they wait for a fast-moving prey item to come by, but then they come out of nowhere and grab the prey with their long skinny appendages.'

However, little was know about how these vicious predators unleash their lightning-fast attacks. According to deVries, the spearing shrimp are closely related to smasher mantis shrimps, which pulverise the shells of crustaceans and molluscs with a single explosive blow from their mighty claws. Having decided to find out how the crustaceans unleash their deadly assaults, deVries says, 'We thought that the spearers would be just as fast – if not faster – than the smashers because they have a smaller time window in which to capture their prey.' deVries and her colleagues publish their discovery that Lysiosquillina maculata spearer mantis shrimps power their mighty spears with muscle alone while smaller Alachosquilla vicina spearer mantis shrimps use a more conventional catapult mechanism in The Journal of Experimental Biology at http://jeb.biologists.org.

Working with her PhD advisor, Sheila Patek, deVries took a short trip along the corridor to Roy Caldwell's lab to film some of his L. maculata mantis shrimps. Coaxing the nocturnal lobster-sized crustaceans to assault frozen prawns, deVries recalls that the animals were reluctant to attack; 'They probably didn't like the bright lights', she says. However, when the duo analysed the speed of the strikes, they were surprised that the spearer's harpoon speed was much slower than that of their smashing cousin's. Explaining that smashers can unleash strikes at speeds ranging from 10 to 23m/s, the duo were taken aback that L. maculata could only muster 2 m/s.

Smasher mantis shrimp store catapult energy in skeletal springs that they unleash during a deadly assault; therefore deVries analysed the trajectories of several L. maculata claws in action, and realised that the hefty crustaceans were not using the same mechanism. 'The spear has all the same components [as the smashers]', explains deVries, but she adds that the shape of some of the structures are subtly different and the spring did not deform to store energy prior to an attack – possibly because it is too stiff – preventing L. maculata from firing a ballistic attack. 'If the L. maculata movement is similar to other ambush predators that have muscle-driven strikes, it is possible that these guys are creating strikes with muscle movement', says deVries.

Next, deVries and Patek tested the reactions of another, smaller mantis shrimp, Alachosquilla vicina, to find out whether all spearing mantis shrimps have opted for muscle-powered strikes. Elizabeth Murphy filmed the animals snapping up brine shrimp however, it was obvious that the diminutive crustaceans were using a spring-loaded catapult to spear their nimble prey. The team could clearly see energy-storing deformations in the spring structure before the mantis shrimp unfurled their deadly assaults at 6m/s.

But the team were still puzzled by L. maculata's sluggish performance. Maybe the lab-based animals had become too unfit to produce explosive attacks? Traveling to Australia to film L. maculata hunting in the wild, the team were relieved to see that the animals' reactions were well within the range of speeds that they had measured in the lab. Adult L. maculata use muscle-powered attacks all the time.

Having confirmed that it is possible for the large shrimp to produce lightening-fast strikes without using a spring mechanism, deVries says 'We're trying to get more L. maculata in the lab to look at the complete size range in one species to see how the strike scales and to find out if there is a size threshold above which you can't have a spring-loaded strike anymore.'

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org/content/215/24/4374.abstract

REFERENCE: deVries, M. S., Murphy, E. A. K. and Patek, S. N. (2012). Strike mechanics of an ambush predator: the spearing mantis shrimp. J. Exp. Biol. 215, 4374-4384.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>