Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Research of Zebrafish Neurons May Lead to Better Understanding of Birth Defects like Spina Bifida

19.02.2014
The zebrafish, a tropical freshwater fish similar to a minnow and native to the southeastern Himalayan region, is well established as a key tool for researchers studying human diseases, including brain disorders.

Using zebrafish, scientists can determine how individual neurons develop, mature and support basic functions like breathing, swallowing and jaw movement. Researchers at the University of Missouri say that learning about neuronal development and maturation in zebrafish could lead to a better understanding of birth defects such as spina bifida in humans.

“We are studying how neurons move to their final destinations,” said Anand Chandrasekhar, professor of biological sciences and a researcher in the Bond Life Sciences Center at MU. “It’s especially critical in the nervous system because these neurons are generating circuits similar to what you might see in computers. If those circuits don’t form properly, and if different types of neurons don’t end up in the right locations, the behavior and survival of the animal will be compromised.”

The scientists studied zebrafish embryos, which are nearly transparent, making internal processes easy to observe. Using modified zebrafish expressing green fluorescent jellyfish protein, Chandrasekhar and his team were able to track neuronal migration.

“This approach is used extensively to visualize a group of cells,” Chandrasekhar said. “In our study, clusters of green cells glowed and indicated where motor neurons were located in the brain. Some groupings are shaped like sausages while others are round, but each cluster of 50 to150 cells sends out signals to different groups of jaw muscles.”

These motor neurons that Chandrasekhar studied are located in the hindbrain, which corresponds to the human brainstem and controls gill and jaw movement in these tiny fish. Genes controlling the development and organization of these neurons in zebrafish are functionally similar to genes in higher vertebrates including mammals.

Chandrasekhar’s work contributes to a better understanding of how neuronal networks are organized and “wired” during development. These studies also may provide insight into birth defects like spina bifida, which affects 1 in every 2,000 births, according to the National Institutes of Health.

“One of the hallmarks of spina bifida is an open neural tube in the spinal cord,” Chandrasekhar said. “The cells closing the neural tube actually know left from right, and front from back, just like the neurons migrating to their appointed places in the zebrafish hindbrain. Additionally, mutations in many genes that result in defective neuronal migration can lead to defects in neural tube closure. We anticipate that understanding the genes and mechanisms controlling neuronal migration in zebrafish will shed light on the mechanisms of human neural tube closure, and why this process goes awry in spina bifida.”

Chandrasekhar’s study, “Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish” was recently published in February 2014 edition of Mechanisms of Development. He also published a related study, “The PCP protein Vangl2 regulates migration of hindbrain motor neurons by acting in floor plate cells, and independently of cilia function,” in the October 2013 edition of Developmental Biology.

Editor’s Note: For another article on this study please visit: “Mind map: Bond LSC research explains how proteins guide migrating neurons.”

Also, Chandrasekhar’s work is featured on the SciXchange blog at: “Fish and free throws.”

Story Contact(s):
Jeff Sossamon, sossamonj@missouri.edu, 573-882-3346
Roger Meissen, MeissenR@missouri.edu, (573) 884-7443

Jeff Sossamon | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>