Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metal Strengthens Double Bond

Professor Holger Braunschweig and his team come up with stunning new discoveries in chemistry with great regularity. This time, the Würzburg researchers turn an established model describing catalytic processes on its head.

Be it margarine, chemical fertilizers or plastic cups: The chemical principle of catalysis plays an important role in the production of various products. In the production process, a so-called catalyst enables certain reactions to proceed. Catalysts are indispensable for hardening vegetable oils into margarine or for producing polyethylene and other plastics.

Take the example of margarine: In order to create spreadable fat from liquid vegetable oil, you need to break bonds in hydrogen molecules. This is where a metallic catalyst comes in. Its metal atom pushes electrons into the bonds, destabilizing them in the process, so that they are ready for the desired reaction.

Established model turned on its head

A metal donates electrons, thereby weakening chemical bonds: This effect – known as the "Dewar-Chatt-Duncanson model" – has been known to chemists since 1953. However, the model must now be supplemented, having been turned on its head by chemists of the University of Würzburg.

The new insight: The electrons of a metal can also strengthen a chemical bond – at least in the case of a double bond between two boron atoms. This is reported in the journal "Nature Chemistry" by researchers of Professor Holger Braunschweig's study group.

Theory experimentally confirmed

A double bond between two boron atoms can accommodate exactly two additional electrons. Chemists speak in this context of a "free II-orbital". If you fill this space, the bond should become stronger: This is the assumption that the Würzburg chemists Dr. Rian Dewhurst and Dr. Alfredo Vargas started from. They modeled their idea on the computer and found it confirmed – purely theoretically at first.

The next step was to confirm the theory by means of an experiment. Within the study group, the researchers found a molecule that was ideally suited for this purpose: a so-called platinum diboranyl complex. This molecule had been synthesized in a sophisticated process by Alexander Damme when working on his doctoral thesis.

Boron-boron double bond plus platinum

The centerpiece of the complex consists of two boron atoms that are linked to each other by a single bond in close proximity to a platinum atom. Damme devised the following procedure: He forced additional electrons on the complex, thus producing a boron-boron double bond.

According to the established model, this double bond should have been weaker than a "normal" boron-boron double bond due to the influence of the platinum metal. In actual fact, however, the bond even proved to be stronger. This was shown in a single crystal X-ray diffraction analysis of the material. This method allows you to determine how far the atoms of a molecule are apart from each other. The closer they are together, the stronger their bond will be. The Würzburg chemists found out that two boron atoms in a double bond come significantly closer together in the presence of platinum than they do without the metal.

New knowledge for textbooks

What are the consequences of this discovery? The everyday practice in chemical laboratories and industrial processes won't be affected for now. But the chemistry textbooks need to be supplemented. To be sure, the "Dewar-Chatt-Duncanson model" has not yet become obsolete; it remains applicable to carbon compounds. But it needs to be substantially extended now. You never know – maybe a model by the name of "Braunschweig-Damme-Dewhurst-Vargas" will be added.

“Bond-strengthening II backdonation in a transition-metal II-diborene complex”, Holger Braunschweig, Alexander Damme, Rian D. Dewhurst, and Alfredo Vargas, Nature Chemistry, 2012 Dec 9, DOI: 10.1038/NCHEM.1520

Contact person

Prof. Dr. Holger Braunschweig, Institute for Inorganic Chemistry of the University of Würzburg, T +49 (0)931 31-85260,

Robert Emmerich | Uni W¨¹rzburg
Further information:

More articles from Life Sciences:

nachricht First-time reconstruction of infectious bat influenza viruses
25.10.2016 | Universitätsklinikum Freiburg

nachricht The nanostructured cloak of invisibility
25.10.2016 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>