Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light Instead of Current

20.02.2009
Activation of neurons with light by means of semiconductor photoelectrodes

Understanding the mechanisms by which the brain functions is one of the most complex challenges in science. One important aspect is the electrical conduction of stimuli in nerve cells.

In order to study neuronal circuits, a sharp metal electrode is usually inserted into the brain to introduce a current. However, the response does not reflect the highly complex activation patterns of natural nerve stimuli. In addition, the direct current applied in this fashion causes damage to tissue through undesired electrochemical side reactions.

Collaboration between neuroscientists and nanomaterials researchers at Case Western Reserve University (Cleveland, Ohio, USA) has resulted in the development of a technique that is both gentler and elicits more natural nerve impulses. As reported in the journal Angewandte Chemie, the technique is based on a micropipette coated with semiconductor nanoparticles that activates neurons in brain tissue with visible or infrared (IR) light. In contrast to conventional electrodes, these photoelectrodes require neither wires nor electrical power.

The team led by Ben W. Strowbridge and Clemens Burda coated the interiors of extremely finely drawn-out glass micropipettes with lead selenide nanoparticles. Lead selenide is a semiconductor that is activated by IR light. As in solar cells, irradiation “catapults” firmly bound electrons out of the valence band and into the conduction band of the semiconductor, where they can move freely. This leads to charge separation and thus to an electrical potential. With a suitable laser, defined processes elicited by short light pulses set off corresponding electrical pulses in the micropipette. An electrical field is thus formed around the pipette, which can then be used by the researchers to stimulate neurons in rat brain samples with a high degree of time-resolution. Measuring electrodes could then be used to record the natural activation patterns of very similar nerve impulses.

Samples of the olfactory bulb (a region of the brain involved in processing smell) and the hippocampus (part of the cerebrum important in the transfer of contents from short-term to the long-term memory) were examined. Neither toxic effects nor damage to the nerve cells were observed after repeated stimulation.

By using these new photoelectrodes, the cooperation of nerve cells can be studied. However, therapeutic applications are also possible: the probes could be used to activate individual regions of the brain or damaged or cut nerves to restore function – without the need for disturbing wires.

Author: Clemens Burda, Case Western Reserve University, Cleveland (USA), http://www.case.edu/nanobook/pages/faculty/cburda.htm

Title: Wireless Activation of Neurons in Brain Slices Using Nanostructured Semiconductor Photoelectrodes

Angewandte Chemie International Edition 2009, 48, No. 13, doi: 10.1002/anie.200806093

Clemens Burda | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.case.edu/nanobook/pages/faculty/cburda.htm

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>