Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Levitating Crystals

10.09.2013
Magnetic levitation separates crystal polymorphs by their density

The effectiveness of crystalline pharmaceuticals is not only influenced by molecular composition; the structure of the crystals is also important because it determines both the solubility and the rate of dissolution, which in turn affect the bioavailability.

Researchers from Cambridge, Massachusetts (USA) have recently developed a method by which different crystals can be separated by their density in a magnetic field. In the journal Angewandte Chemie, they have now demonstrated the extraordinary efficiency of separation through “magnetic levitation”.

Many organic substances crystallize in multiple crystal structures known as polymorphs. Drugs are not the only class of products for which this can lead to problems. Different crystal structures can lead to color variation in pigments and dyes; in explosives it can lead to changes in sensitivity.

It is not always possible to control the crystallization process to obtain only the desired polymorph. Clean separation is often difficult, and occurs either by chance or through long and complex procedures. A team led by Allan S. Myerson at the Massachusetts Institute of Technology and George M. Whitesides at Harvard University has recently developed a simple method that makes it possible to separate polymorphs conveniently and reliably within minutes through magnetic levitation. The technique is based on the fact that different crystal modifications almost always have different densities.

Their clever method works like this: Two magnets are placed one over the other at 4.5 cm apart with like poles facing. This produces a magnetic field with a linear gradient and a minimum in the middle, between the two magnets. The crystals to be separated are suspended in a solution of paramagnetic ions and placed in a tube within the magnetic field. The gravitational force causes the crystals to sink down to the bottom of the tube.

By doing so, a crystal “displaces” its own volume of the paramagnetic fluid “upwards”. Yet, this is unfavorable, because the paramagnetic fluid is attracted by the magnet — the attraction gets stronger closer to the face of the magnet. The crystal sinks as long as it reaches a distance above the magnet where the gravitational force and the magnetic attraction on the equivalent volume of the paramagnetic fluid are balanced. At this point, the crystal will “float” in the fluid. As the strength of the gravitational force depends on the density of the crystal, the “floating point” is different for different crystal modification. The solution is then removed from the tube with a cannula and divided into multiple fractions.

Through separation of different polymorphs of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophencarbonitrile, sulfathiazole, carbamazepine, and trans-cinnamic acid, the scientists have presented impressive evidence of the efficiency of their new technique, which allows for the separation of crystal forms with a difference in density as low as 0.001 g/cm3.

About the Author
George M. Whitesides is the Woodford L. and Ann A. Flowers University Professor at Harvard University, with a background in chemistry, biochemistry, and materials science. He and his students study subjects ranging from “diagnostics for the developing world” to “the origin of life”, and magnetic levitation and the measurement of density is one part of a program designed to develop new tools for medicinal chemistry, and for molecular and cellular biology.
Author: George M. Whitesides, Harvard University, Cambridge (USA), http://gmwgroup.harvard.edu/content.php?page=contact
Title: Using Magnetic Levitation to Separate Mixtures of Crystal Polymorphs
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201305549

George M. Whitesides | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>