Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Levitating Crystals

10.09.2013
Magnetic levitation separates crystal polymorphs by their density

The effectiveness of crystalline pharmaceuticals is not only influenced by molecular composition; the structure of the crystals is also important because it determines both the solubility and the rate of dissolution, which in turn affect the bioavailability.

Researchers from Cambridge, Massachusetts (USA) have recently developed a method by which different crystals can be separated by their density in a magnetic field. In the journal Angewandte Chemie, they have now demonstrated the extraordinary efficiency of separation through “magnetic levitation”.

Many organic substances crystallize in multiple crystal structures known as polymorphs. Drugs are not the only class of products for which this can lead to problems. Different crystal structures can lead to color variation in pigments and dyes; in explosives it can lead to changes in sensitivity.

It is not always possible to control the crystallization process to obtain only the desired polymorph. Clean separation is often difficult, and occurs either by chance or through long and complex procedures. A team led by Allan S. Myerson at the Massachusetts Institute of Technology and George M. Whitesides at Harvard University has recently developed a simple method that makes it possible to separate polymorphs conveniently and reliably within minutes through magnetic levitation. The technique is based on the fact that different crystal modifications almost always have different densities.

Their clever method works like this: Two magnets are placed one over the other at 4.5 cm apart with like poles facing. This produces a magnetic field with a linear gradient and a minimum in the middle, between the two magnets. The crystals to be separated are suspended in a solution of paramagnetic ions and placed in a tube within the magnetic field. The gravitational force causes the crystals to sink down to the bottom of the tube.

By doing so, a crystal “displaces” its own volume of the paramagnetic fluid “upwards”. Yet, this is unfavorable, because the paramagnetic fluid is attracted by the magnet — the attraction gets stronger closer to the face of the magnet. The crystal sinks as long as it reaches a distance above the magnet where the gravitational force and the magnetic attraction on the equivalent volume of the paramagnetic fluid are balanced. At this point, the crystal will “float” in the fluid. As the strength of the gravitational force depends on the density of the crystal, the “floating point” is different for different crystal modification. The solution is then removed from the tube with a cannula and divided into multiple fractions.

Through separation of different polymorphs of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophencarbonitrile, sulfathiazole, carbamazepine, and trans-cinnamic acid, the scientists have presented impressive evidence of the efficiency of their new technique, which allows for the separation of crystal forms with a difference in density as low as 0.001 g/cm3.

About the Author
George M. Whitesides is the Woodford L. and Ann A. Flowers University Professor at Harvard University, with a background in chemistry, biochemistry, and materials science. He and his students study subjects ranging from “diagnostics for the developing world” to “the origin of life”, and magnetic levitation and the measurement of density is one part of a program designed to develop new tools for medicinal chemistry, and for molecular and cellular biology.
Author: George M. Whitesides, Harvard University, Cambridge (USA), http://gmwgroup.harvard.edu/content.php?page=contact
Title: Using Magnetic Levitation to Separate Mixtures of Crystal Polymorphs
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201305549

George M. Whitesides | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>