Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lemur lovers sync their scents

31.01.2014
The strength of a lemur couple's bond is reflected by the similarity of their scents, finds a new study.

"It's like singing a duet, but with smells instead of sounds," said Christine Drea, a Duke University professor who supervised the study.

Duke researchers sampled and analyzed scent secretions produced by lemurs known as Coquerel's sifakas living at the Duke Lemur Center in Durham, NC. The researchers also monitored the animals' scent-marking and sniffing behavior across the breeding season.

They found that lemur lovers mirror each other's scent-marking behavior, and that lemur couples with kids give off similar scents -- possibly as a way to combine territory defenses or to advertise their relationship status to the rest of their group, the researchers say.

The lemurs spend the most time scent-marking and investigating each other's odors before they have kids. After they reproduce, they smell more like each other.

The findings appear in the February 2014 edition of Animal Behaviour.

Coquerel's sifakas are white-furred lemurs with chocolate-brown patches on their chests, arms and legs. They have glands on their throats and genital areas that produce a sticky goo that is dabbed on branches and tree trunks as the animals move through the forest.

To collect the data, the researchers used cotton swabs to sample scent secretions from the genital regions of eight males and seven females across different phases of the reproductive season.

Gas chromatography and mass spectrometry tests to identify the chemical ingredients in each animal's unique aroma showed that sifaka scent secretions from the genital area alone contain more than 250 odor compounds.

The researchers also followed the behavior of six pairs of potential mates, measuring how often the animals smeared their scents on their surroundings -- a behavior known as scent-marking -- as well as how often they sniffed, licked, or marked over the scents left by other members of their group.

The animals mirrored the scent-marking behavior of their partners. "When one member of a pair started sniffing and scent-marking more often, their mate did too," said Lydia Greene, a research associate in the Department of Evolutionary Anthropology who conducted the study as a Duke undergraduate.

The couples without offspring that spend more time on scent-marking and investigating each other's odors may be in a 'getting-to-know-you' period, the researchers say.

"If two animals have never reproduced, the male doesn't necessarily know what the female smells like when she's in heat, because they've never gone through this before. They might need to scent mark a lot more to figure out when it's time to mate," Greene said.

Sifaka couples with kids spent less time scent-marking and investigating each other's odors, but their odor profiles were more similar than those of couples without kids, possibly due to the exchange of odor-producing bacteria during mating, grooming, or other forms of physical contact.

Surprisingly, the number of years a couple had lived together made no difference to their mating success or the similarity of their scents. "Some of the sifaka couples had been living together for quite a while, but hadn't managed to produce an infant, whereas others had been living together for a really short period of time and had already successfully reproduced," Greene said.

Figuring out what the sifakas' chemical messages mean will take more time. The scent secretions of other lemur species contain hundreds of odor compounds that help the animals distinguish males from females, mark the boundaries of their territories, even tell when a female is fertile or sniff out the best mates. By sharing similar scent signals, sifaka couples could be jointly defending their territories, or advertising their bond to other lemurs in the group.

"It could be a signal that they're a united front," Drea said.

"[They could be saying] we're a thing. We've bonded. Don't mess with us," Greene added.

This work was supported by Molly H. Glander Memorial Undergraduate Research Grants, Duke University Undergraduate Research Support grants, and by the U.S. National Science Foundation.

CITATION: "Love is in the air: sociality and pair bondedness influence sifaka reproductive signaling," Greene, L. and C. Drea. Animal Behaviour, February 2014. http://dx.doi.org/10.1016/j.anbehav.2013.11.019

Robin Ann Smith | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Animal Coquerel's sifakas lemur undergraduate

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>