Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inverse Fingerprints on Paper

05.11.2012
Visualization of Latent Fingermarks by Nanotechnology: Reversed Development on Paper: A Possible Remedy to the Variation in Sweat Composition

Paper is one of the surfaces most commonly tested for fingerprints in forensics. Unfortunately, it is particularly difficult to make fingerprints on paper visible. In the journal Angewandte Chemie, Israeli scientists have now introduced a new method developed specifically for use on paper.



It produces a “negative” of the fingerprint and is, in contrast to conventional methods, independent of the composition of the sweat residue left behind.

In many criminal cases, paper evidence plays an important role and it would be useful to know through whose hands checks, documents, or paper currency have passed. Studies have shown that only about half of the fingerprints present on paper can be made sufficiently visible. The main reason that this does not work consistently seems to be the highly variable composition of the sweat left behind on the paper.

A team led by Daniel Mandler and Joseph Almog at the Hebrew University of Jerusalem has now developed a procedure that avoids these problems. It involves a sort of inversion of an established method in which gold nanoparticles are first deposited onto the invisible fingerprints, followed by elemental silver, similar to the development of a black and white photograph.

In the conventional technique, the gold particles get stuck to components of the sweat in fingerprints. In contrast, the gold nanoparticles in the new method stick directly to the paper, not the sweat. This technique uses the sebum from the fingerprints, which effectively shields the paper beneath it from the gold nanoparticles. Treatment with a developer containing silver, which turns the areas with gold on them black, results in a negative image of the fingerprint.

The secret to the success of these researchers is a special bifunctional reagent. The head of this molecule is an acylpyridazine group, which can bind to cellulose. The tail is made of hydrocarbon chains with a sulfur-containing group at the end, which binds to gold and attaches the molecule to the surface of the gold nanoparticles. When gold particles coated with these molecules are deposited onto paper with a fingerprint on it, the heads bind to the cellulose in the paper, avoiding the fat-containing lines.

Because only the fatty components of the fingerprints are used, the possibly unfavorable composition of the sweat in the fingerprint plays no role in this method. This technique also promises to alleviate another problem: if paper has become wet, it has previously been nearly impossible to detect fingerprints because the amino acids in the sweat, which are the primary substrate for current chemical enhancement reactions, are dissolved and washed away by water. The fatty components are barely effected.

About the Author
Joseph Almog is a Professor of forensic chemistry at the Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, and formerly the director of the Division of Identification and Forensic Science (DIFS) of the Israel Police. His main research topics are development of crime-scene techniques, explosives detection and identification and enhancement of latent fingermarks. He is the 2005 laureate of the American Academy of Forensic Sciences' Lucas Medal "for outstanding achievements.
Author: Joseph Almog, Hebrew University of Jerusalem (Israel), http://www.huji.ac.il/dataj/controller/ihoker/MOP-STAFF_LINK?sno=208470

Title: Visualization of Latent Fingermarks by Using Nanotechnology for Reversed Development on Paper: A Remedy to the Variation in Sweat Composition

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201205259

Joseph Almog | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>