Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing fish shed light on metabolism

03.12.2012
UCSF scientists use tiny zebrafish to screen for drugs to help control obesity, diabetes, other conditions

A tiny, translucent zebrafish that glows green when its liver makes glucose has helped an international team of researchers identify a compound that regulates whole-body metabolism and appears to protect obese mice from signs of metabolic disorders.

Led by scientists at the University of California, San Francisco (UCSF), the work demonstrates how a fish smaller than a grain of rice can help screen for drugs to help control obesity, type 2 diabetes and other metabolic disorders, which affect a rising 34 percent of American adults and are major risk factors for cardiovascular disease.

Described this week in the journal Nature Chemical Biology, the new compound emerged from a panel of 2,400 medications and drug-like compounds tested in the zebrafish. The test was designed to identify key regulators of "fasting metabolism"— a state most people face every day after the lingering remnants of their long-digested meals pass slowly down their digestive tract.

Fasting metabolism is the body's way of fulfilling its energy needs between meals by turning to fat and other stored sources. It involves a carefully balanced and coordinated cascade of reactions that see numerous genes in various tissues kick into action and do things like burn fat.

In type 2 diabetes and other metabolic diseases, this careful balance is lost.

"The body cannot keep up with the breakdown of energy, and lipids [molecules of fat] can accumulate to toxic levels in the liver," said UCSF postdoctoral fellow Philipp Gut, MD, who led the research with Didier Y.R. Stainier, PhD, a professor in the Department of Biochemistry and Biophysics.

How the Screen Works

Some screens can be conducted in cell culture by taking living cells grown in the laboratory and exposing them to various drugs. The ability to rapidly test large libraries of compounds in the last few decades through such screens has revolutionized biomedical science.

But looking for drugs that regulate biological processes like metabolism, which involves multiple interacting organs in the body, and even more types of cells, cannot be done in cell screens because they lack the same complexity. Mice are often used to test pharmacological compounds, but screens of this magnitude would require thousands of mice, which would be ethically impossible to justify and prohibitively expensive.

Gut and his colleagues set out to develop the zebrafish screen as an ethical and inexpensive solution, and the new paper demonstrates the validity of this approach, he said. Furthermore, this study illustrates the fact that model organisms should be an integral part of the new roadmap defined by the NIH and other medical research organizations around the world to translate the most advanced laboratory science into benefits for patients, Stainier said.

Of the thousands of compounds the team screened, two appeared to turn on a handful of genes that caused the animals to burn fat as a way of producing energy – an end that would be desirable for many people with metabolic disorders.

Further experiments with one of these compounds in mice showed that it could protect obese mice from metabolic problems.

The article, "Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism," by Philipp Gut, Bernat Baeza-Raja, Olov Andersson, Laura Hasenkamp, Joseph Hsiao, Daniel Hesselson, Katerina Akassoglou, Eric Verdin, Matthew D Hirschey and Didier Y R Stainier will be published online by the journal Nature Chemical Biology on Dec. 2, 2012.

This study was supported by the National Institutes of Health through grant #P30 DK026743, #P30 DK063720, #DK59637, #NS051470, #U01 DK089541 and #RO1 DK60322 and by a grant from the American Heart Association. Additional funds were provided by the Gladstone Institutes, the Glenn Foundation for Medical Research and through a postdoctoral fellowship from the German Research Foundation.

In addition to UCSF, authors on this study are associated with the Gladstone Institutes in San Francisco; Duke University Medical Center in Durham, N.C.; Karolinska Institutet in Stockholm, Sweden; the Garvan Institute of Medical Research in New South Wales, Australia; and the Max Planck Institute for Heart and Lung Research in Bad Nauheim, Germany.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>