Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel genes determine division of labor in insect societies

30.01.2014
Mainz biologists show in a scientific study how gene expression differs between castes in ants

Novel or highly modified genes play a major role in the development of the different castes within ant colonies. Evolutionary biologists at Johannes Gutenberg University Mainz (JGU) came to this conclusion in a recent gene expression study.


A small colony of the Temnothorax longispinosus ant species with two queens
photo/©: Susanne Foitzik, JGU

Dr. Barbara Feldmeyer and her colleagues at the JGU Institute of Zoology studied the question how the different female castes arise. An ant colony generally consists of a queen and the workers. Moreover, workers can differ depending on the task they perform, such as brood care, foraging, or nest defense.

This behavioral specialization may be accompanied by morphological and physiological differences. Queens, solely responsible for reproduction, can live up to 30 years while workers have life spans ranging from a few months to several years. In some species there are also soldier ants, which can weigh up to 100 times more than their worker sisters who take care of the brood.

Interestingly, the divergent phenotypic traits of queens and workers develop from the same genetic background; the different phenotypic trajectories are determined by the food larvae receive during development. Usually the queen is the sole reproductive individual in a nest but if she dies or is removed, some brood-care workers will develop their ovaries and begin to reproduce.

It was this phenomenon that the Mainz scientists exploited in order to induce fertility in brood-care workers of the Temnothorax longispinosus ant species. This allowed the comparison of these fertile workers with infertile brood-carers, foragers, and the queens to determine the expression of genes causing the enormous variations in behavior, fertility, and life span.

"We have here the ideal model system to study polyphenism, which describes the situation in which one and the same genotype gives rise to phenotypes that differ in terms of individual morphology, behavior, and life history," said Dr. Barbara Feldmeyer. Each sample used for RNA sequencing encompassed up to 100 million reads, i.e., short sequence sections of about 100 base pairs. The largest differences in gene expression were found between the queen and the worker castes, while the smallest differences were determined between the infertile brood carers and the foragers. The fertile brood care workers occupy an intermediate position between the queen and the sterile workers.

The ant queens expressed many caste-specific genes whose functions were known from comparisons with other species. This is not the case for the workers in which about half of the characteristic genes were found to be of unknown function. "Either these worker genes have undergone major modifications or they are novel genes," explained Feldmeyer. The fact that queens express more genes known from solitary hymenopterans and other insects fits to the evolution of social insects with workers being the derived state.

"This study of the differences in gene expression among ant castes is characteristic of the enormous advances that are currently being made in the field of biology," explained Professor Susanne Foitzik, head of the Evolutionary Biology work group at Mainz University. RNA sequencing is a technique that enables scientists to gain in-depth molecular information even for organisms that are not among the standard biological model organisms, such as the fruit fly Drosophila. "We can now also look at species known for their complexity in social behavior. In addition, by studying ants we can gain insights into the genes that are responsible for the unusually long life and fertility in insect queens," added Foitzik. The work group plans to continue its research into this area under the aegis of the new GeneRED research unit of the Faculty of Biology and the Institute of Molecular Biology (IMB).

Image:
http://www.uni-mainz.de/bilder_presse/10_zoologie_ameisen_t_longispinosus_koloni...
A small colony of the Temnothorax longispinosus ant species with two queens
©photo: Susanne Foitzik
Publication:
Barbara Feldmeyer, Daniel Elsner, Susanne Foitzik
Gene expression patterns associated with caste and reproductive status in ants:
worker-specific genes are more derived than queen-specific ones.
Molecular Ecology, January 2014
DOI: 10.1111/mec.12490
Further information:
Professor Susanne Foitzik
Institute of Zoology – Evolutionary Biology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-27840
fax +49 6131 39-27850
e-mail: foitzik@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/evobio/index_ENG.php
Weitere Informationen:
http://onlinelibrary.wiley.com/doi/10.1111/mec.12490/abstract
- Abstract ;
http://onlinelibrary.wiley.com/doi/10.1111/mec.12580/abstract
- “The importance of genomic novelty in social evolution“ ;
https://www.imb-mainz.de/research/initiatives/GeneRED/
- GeneRED

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de
http://www.bio.uni-mainz.de/zoo/evobio/index_ENG.php

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>