Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Sequencing Project Mines Data Once Considered ’Junk’ for Clues About Cancer

28.01.2013
St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project takes new approach to measuring the repetitive DNA at the end of chromosomes and opens new window on mechanisms fueling cancer

Genome sequencing data once regarded as junk is now being used to gain important clues to help understand disease. The latest example comes from the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project, where scientists have developed an approach to mine the repetitive segments of DNA at the ends of chromosomes for insights into cancer.

These segments, known as telomeres, had previously been ignored in next-generation sequencing efforts. That is because their repetitive nature meant that the resulting information had defied analysis and the data were labeled as junk. But researchers have now traced changes in the volume of telomeric DNA to particular types of cancer and their underlying genetic mistakes. Investigators found that 32 percent of pediatric solid tumors carried extra DNA for telomeres, compared to just 4 percent of brain tumors and none of the leukemia samples studied. The findings were published recently in the journal Genome Biology.

Using this new approach, the investigators have linked changes in telomeric DNA to mutations in the ATRX gene and to longer telomeres in patients with a subtype of neuroblastoma, a cancer of the sympathetic nervous system. Telomere length limits how many times cells can divide. Mechanisms that maintain or lengthen telomeres contribute to the unchecked cell division that is a hallmark of cancer.

“This paper shows how measuring the DNA content of telomeres can enhance the value of whole- genome sequencing,” said Matthew Parker, Ph.D., the paper’s first author and a St. Jude postdoctoral fellow. “In the case of the ATRX mutation, the telomere findings gave us information about the mutation’s impact that would have been hard to get through other means.”

The results stem from the largest study yet of whole-genome sequencing to measure the content of telomeric DNA. The effort involved whole-genome sequencing of normal and tumor DNA from 235 pediatric patients battling 13 different cancers. For comparison, normal DNA from 13 adult cancer patients was included in the research.

“There’s been a lot of interest among cancer researchers into telomere length,” said Richard Wilson, Ph.D., director of The Genome Institute at Washington University School of Medicine in St. Louis. “While more research remains, we think it’s important to begin to characterize the genetic sequences that make up the telomeres. That’s a crucial first step to understanding more precisely any role they may play in cancer.”

The Pediatric Cancer Genome Project sequenced the complete normal and cancer genomes of more than 600 children and adolescents with some of the most aggressive and least understood cancers. Investigators believe the project’s findings will lay the foundation for a new generation of clinical tools. Despite advances, cancer remains the leading cause of death by disease of U.S. children age 1 and older.

The human genome is stored in the four-letter chemical alphabet of DNA, a molecule that stretches more than 3 billion characters in length and provides the instructions for building and sustaining life. Those instructions are the genes that are organized into the 46 chromosomes found in almost every cell.

Each chromosome ends with the same six-letter DNA sequence that is associated exclusively with telomeres. The DNA sequence does not vary, but the number of times it is repeated does, affecting the length of the telomeres. Telomeres shorten each time cells divide, which explains why their length declines naturally with age.

Researchers have known cancer cells use several mechanisms to circumvent the process and keep dividing. But until now the repetitive nature of the telomeric DNA sequence meant they had little to offer researchers using whole-genome sequencing to map the human genome. Other genes can be assigned to a particular spot on a particular chromosome; telomeres cannot.

“For scientists analyzing whole-genome sequencing data the telomeres were just a headache,” said the study’s corresponding author Jinghui Zhang, Ph.D., an associate member of the St. Jude Department of Computational Biology. “We could not properly map them to a position on the human genome, so we didn’t really use them.”

Then listening to a colleague’s presentation, Parker had an idea: “Why not just count the telomeric DNA and look for changes between the normal and cancer cells of patients?”

Zhang said the question was a conceptual leap in thinking about how to use whole-genome sequencing data to study telomeres and cancer. “This is the classic story of how one person’s problem is another person’s gold,” she said.

Parker and his colleagues developed an approach that correctly distinguished between older and younger individuals based on the amount of telomeric DNA in their blood or bone marrow cells. Researchers used three other methods to confirm that whole-genome sequencing could be used to reliably capture telomeric DNA differences between normal and cancer cells. Additional supportive evidence came when investigators found that the method yielded similar estimates of the telomeric DNA content of twins with leukemia who shared similar genetic alterations.

When investigators used the method to study pediatric cancer patients, they found tumors that gained telomeric DNA were also more likely to contain chromosomal abnormalities, including rearrangements within and between chromosomes. Researchers also found that different cancers had distinct patterns of telomeric DNA change. In some cases, the change offered clues about the mechanism responsible for lengthening the telomeres, pointing to a process called alternative lengthening of telomeres.

The other authors are Xiang Chen, Armita Bahrami, James Dalton, Michael Rusch, Gang Wu, John Easton, Michael Dyer, Charles Mullighan, Richard Gilbertson, Suzanne Baker, Gerard Zambetti, David Ellison and James Downing, all of St. Jude; Nai-Kong Cheung, Memorial Sloan-Kettering Cancer Center, New York; and Elaine Mardis, of The Genome Institute at Washington University, St. Louis.

The research was funded in part by the Pediatric Cancer Genome Project, including Kay Jewelers, a lead partner; a Cancer Center Support Grant (CA021765) from the National Cancer Institute at the National Institutes of Health; the Henry Schueler 41&9 Foundation in conjunction with Partnership4Cures; and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for anything. For more information, visit www.stjude.org. Follow us on Twitter @StJudeResearch.
Washington University School of Medicine
Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.
St. Jude Media Relations Contacts:
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org
Summer Freeman
(desk) 901- 595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Washington University Media Relations Contact:
Caroline Arbanas
(cell) 314-445-4172
(desk) 314-286-0109
arbanasc@wustl.edu

Carrie Strehlau | Newswise
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

How to merge two black holes in a simple way

26.09.2016 | Physics and Astronomy

Australian technology installed on world’s largest single-dish radio telescope

26.09.2016 | Physics and Astronomy

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>