Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered flies spill secret of seizures

12.10.2012
Scientists have observed the neurological mechanism behind temperature-dependent — febrile — seizures by genetically engineering fruit flies to harbor a mutation analogous to one that causes epileptic seizures in people. In addition to contributing the insight on epilepsy, their new study also highlights the first use of genetic engineering to swap a human genetic disease mutation into a directly analogous gene in a fly.

In a newly reported set of experiments that show the value of a particularly precise but difficult genetic engineering technique, researchers at Brown University and the University of California–Irvine have created a Drosophila fruit fly model of epilepsy to discern the mechanism by which temperature-dependent seizures happen.

The researchers used a technique called homologous recombination — a more precise and sophisticated technique than transgenic gene engineering — to give flies a disease-causing mutation that is a direct analogue of the mutation that leads to febrile epileptic seizures in humans. They observed the temperature-dependent seizures in whole flies and also observed the process in their brains. What they discovered is that the mutation leads to a breakdown in the ability of certain cells that normally inhibit brain overactivity to properly regulate their electrochemical behavior.

In addition to providing insight into the neurology of febrile seizures, said Robert Reenan, professor of biology at Brown and a co-corresponding author of the paper in the Journal of Neuroscience, the study establishes

“This is the first time anyone has introduced a human disease-causing mutation overtly into the same gene that flies possess,” Reenan said.

Engineering seizures

Homologous recombination (HR) starts with the transgenic technique of harnessing a transposable element (jumping gene) to insert a specially mutated gene just anywhere into the fly’s DNA, but then goes beyond that to ultimately place the mutated gene into exactly the same position as the natural gene on the X chromosome. HR does this by outfitting the gene to be handled by the cell’s own DNA repair mechanisms, essentially tricking the cell into putting the mutant copy into exactly the right place. Reenan’s success with the technique allowed him to win a special grant from the National Institutes of Health last year.

The new paper is a result of that grant and Reenan’s collaboration with neurobiologist Diane O’Dowd at UC–Irvine. Reenan and undergraduate Jeff Gilligan used HR to insert a mutated version of the para gene in fruit flies that is a direct parallel of the mutation in the human gene SCN1A that causes febrile seizures in people.

When the researchers placed flies in tubes and bathed the tubes in 104-degree F water, the mutant fruit flies had seizures after 20 seconds in which their legs would begin twitching followed by wing flapping, abdominal curling, and an inability to remain standing. After that, they remained motionless for as long as half an hour before recovering. Unaltered flies, meanwhile, exhibited no temperature-dependent seizures.

The researchers also found that seizure susceptibility was dose-dependent. Female flies with mutant strains of both copies of the para gene (females have two copies of the X chromosome) were the most susceptible to seizures. Those in whom only one copy of the gene was a mutant were less likely than those with two to seize, but more likely than the controls.

While the researchers at Brown compared the seizure susceptibility of whole flies, O’Dowd, lead author Lei Sun, and colleagues at Irvine studied individual fly neurons implicated in seizure activity to see how they behaved as the brains were heated. What their measurements revealed in the mutant flies were flaws in how “GABAergic” neurons take in sodium through channels in the cell membrane. Under normal circumstances, the neurons inhibit brain overactivity. But the mutants’ mishandling of sodium led them to fail electrically.

“When [O’Dowd’s team] isolates those currents due to the sodium channel, which is what’s mutated in this case, and she compares the normal animals to the disease-model animals, what happens is the mutant channels pass too much current,” Reenan said. “The channels open too easily and they take more effort to close. They open too soon and they close too late. That effect is magnified at higher temperature. Then the neuron can’t send any [inhibitory] signals.”

Searching for therapies

With a useful genetic model of epilepsy in fruit flies, Reenan said he is optimistic that researchers can now look for potential treatments for the disease. The next step, he said, is to use the practice of “forward genetics” to look for further mutations that might counter febrile seizures.

Given thousands of flies with model of the disease, scientists can purposely subject them to different DNA-altering conditions and then look to see if any flies lose their propensity for seizures. Among those that do, the researchers can then identify the specific genetic alteration responsible and determine whether that could ever be clinically applied. For example, if it turns out that a mutation proves therapeutic because it causes a certain protein to be overexpressed, then perhaps that protein could be refined into some kind of biologic pharmaceutical.

Reenan said he’d expect to see researchers follow a similar roadmap for other diseases as well.

“Knock-in of specific disease-causing mutations into the fly genome has the potential to provide a rapid and low-cost platform for studying the cellular mechanisms of heritable human diseases,” the authors wrote. “In addition, knock-in flies can be used in combination with forward genetic screens to identify suppressor and/or enhancer mutations, a strategy that is challenging in humans and rodent models but well established in Drosophila.”

In addition to Reenan, Gilligan, O’Dowd and Sun, other authors are Cynthia Staber of Brown and Ryan Schutte and Vivian Nguyen of UC Irvine.

In addition to the National Institutes of Health, the Howard Hughes Medical Institue and the Ellison Medical Foundation funded the research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>