Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery spotlights key role of mystery RNA modification in cells

07.01.2014
Researchers had known for several decades that a certain chemical modification exists on messenger ribonucleic acid (mRNA), which is essential to the flow of genetic information.

But only recently did experiments at the University of Chicago show that one major function of this modification governs the longevity and decay of RNA, a process critical to the development of healthy cells.

The chemical modification on mRNA in question is called N6-methyladenosine (m6A). A recent study by UChicago scientists reveals how the m6A modification on mRNA could affect the half life of mRNA that in turn regulates cellular protein quantities That discovery could provide fundamental insights into healthy functioning and disorders such as obesity, diabetes, and infertility.

The m6A modification "affects a huge number of messenger RNA in human cells, and yet we did not know its exact function," said Chuan He, professor in chemistry at UChicago and a recently selected investigator of the Howard Hughes Medical Institute. He, Xiao Wang and 11 co-authors from UChicago, University of California, San Diego, and Peking University reported their findings on m6A in the Jan. 2 issue of Nature.

RNA in human cells becomes constantly depleted as it produces proteins, an instability that is essential to biology. "Whenever a cells starts to differentiate, transform into a different type of cell, it needs to express a different set of proteins using a different set of messenger RNA," He said. "It can't be the original set."

The disposal of old RNA allows for the addition of new RNA and the production of different proteins. The Nature study documents that this process is regulated by the insertion or removal of a methyl, a chemical group commonly found in organic compounds.

"Biology is about protein expression regulation: which proteins, how many and at what point," He explained. "If you have the right pattern you get healthy cells. If you get the wrong pattern, you get disease."

It is well known that genetic factors can control protein expression, but the methylation and demethylation of RNA can be epigenetic—operating independent of the sequence of deoxyribonucleic acid (DNA). "This is a very important yet under-explored field," said Wang, the study's lead author and a graduate student in chemistry at UChicago. "It's also a field that is expanding very quickly."

Researchers had long known the presence of the m6A methylation on messenger RNA, but why this occurred remained unknown. He and his associates took a major step in 2011 when they discovered the reverse of the methylation process, demethylation. This discovery involved a so-called "eraser protein" that removed the methyl from RNA, a defect of which leads to obesity. "We basically said, 'Look, if you have certain defect of this function, you get obesity, so there's something going on fundamentally interesting. This methylation appears to play important roles in biological regulation."

He and his associates have now shown that the methylation affects the decay of messenger RNA. "People who are interested in messenger RNA decay or all kinds of cytoplasmic RNA biology now have a new pathway to consider," Wang said.

RNA methylation can vary anywhere from zero to 100 percent as needed to either fine-tune or globally affect protein production. "Researchers had realized that one way to tune the production of protein is to control the lifetime of messenger RNA," Wang said. "We discovered that reversible methylation could be an important parameter in regulating mRNA lifetime."

An extended RNA lifetime would result in more protein production. "If you have a defect of the demethylation mechanism, you could dramatically affect cellular protein levels," He said. And some of those proteins could be essential for energy regulation in the human body, which affects obesity. "Already we know obesity, diabetes and fertility are connected to this, and I'm sure we'll find many other connections."

The demethylases are commonly called erasers. Working alongside eraser proteins are "writer" and "reader" proteins. Writer proteins are the ones that insert methyls into RNA. He's group discovered the first two known eraser proteins since 2011. His group has also identified at least two writer proteins, and many readers, including YTHDF2 that selectively binds m6A in mRNA and controls the mRNA stability as described in their Nature paper.

"YTHDF2 is the first reader protein we have characterized. In fact, it is the first m6A reader protein characterized so far," He said.

Reader proteins endow biological function. "Something has to read a methyl to give it a biological function," He explained. "When you take out the methyl the readers will not read, so there's the regulation. When you put a methyl in, the reader will read." The Nature paper presents the first discovery of a direct link between RNA methylation and biological function, one that tunes the lifetime of mRNA. "Hopefully, I'll have more to report in the future," He said.

Gaining a better understanding of RNA modification may eventually help drug developers devise small molecules that can tune gene expression to kill or control diseased cells, but years of more fundamental research still lies ahead.

"What we have discovered here is a very fundamental biology," He said. "Next we'll look into development, cell differentiation, even neurobiology. This could impact almost every aspect of biology."

Citation: "N6—methyladenosine-dependent regulation of messenger RNA stability," by Xiao Wang, Zhike Lu, Adrian Gomez, Gary C. Hon, Yanan Yue, Dali Han, Ye Fu, Marc Parisien, Qing Dai, Guifang Jia, Bing Ren, Tao Pan and Chuan He, first published online in Nature, Nov. 27, 2013. Published in the print edition on Jan. 2, 2014.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht From rigid to flexible
29.08.2016 | Technische Universität Dresden

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

3-D-printed structures 'remember' their shapes

29.08.2016 | Materials Sciences

From rigid to flexible

29.08.2016 | Life Sciences

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>