Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CT texture analysis of tumors may be a valuable biomarker in localized esophageal cancer

11.02.2013
CT texture analysis of primary tumors may be a potential imaging biomarker in localized esophageal cancer following neoadjuvant chemotherapy, according to research being presented at the 2013 Cancer Imaging and Radiation Therapy Symposium. This Symposium is sponsored by the American Society for Radiation Oncology (ASTRO) and the Radiological Society of North American (RSNA).

This study evaluated the tumoral texture analysis on baseline and post-treatment CT scans of 31 patients with localized resectable esophageal cancer patients with a median age of 63 and who received neoadjuvant chemotherapy between 2007 and 2010. CT scans were performed before and after the use of chemotherapy and prior to surgery.

All patients received platinum and fluorouracil-based chemotherapy followed by surgery. Texture parameters (mean-grey level intensity (MGI), entropy, uniformity, kurtosis, skewness and standard deviation of histogram (SDH)) were derived for four filter values to highlight structures of different spatial width: 1.0 (fine texture), 1.5-2.0 (medium) and 2.5 (coarse). Median follow-up was 21.9 months. Primary tumors became more homogenous following chemotherapy, as entropy decreased and uniformity increased. Smaller change in skewness following chemotherapy was a significant prognostic factor—median overall survival was 36.1 months vs. 11.1 months. Lower baseline entropy and lower post-treatment MGI were also associated with improved survival, although they demonstrated only a trend toward significance.

Texture analysis of the CT scans is a post-processing step, which was done utilizing proprietary software (TexRAD) that enhances the images in ultra-fine detail not visible to the human eye. Certain tumoral features changed consistently following chemotherapy, and some features were associated with overall survival.

“Though these results are for a very small number of patients, they suggest that the tumoral texture features may provide valuable information that could help us to distinguish which patients will do well following chemotherapy and which ones will do poorly,” said Connie Yip, MD, the lead study author, a clinical research fellow at King’s College London, United Kingdom and an associate consultant in radiation oncology at the National Cancer Centre, Singapore. “As a biomarker for treatment efficacy, this technique could save patients from unnecessary surgery and provide more definitive guidance in developing patient treatment plans with improved outcomes.”

The abstract, “CT Tumoral Heterogeneity as a Prognostic Marker in Primary Esophageal Cancer Following Neoadjuvant Chemotherapy,” will be presented in detail during a scientific session at 8:00 a.m. Eastern time on Saturday, February 9, 2013. To speak with Connie Yip, MD, email or call Michelle Kirkwood on February 8-9, 2013, in the Press Office at the Hilton Orlando Lake Buena Vista in the Walt Disney World Resort at 407-560-2314.

About ASTRO

ASTRO is the largest radiation oncology society in the world, with more than 10,000 members who specialize in treating patients with radiation therapies. As the leading organization in radiation oncology, biology and physics, the Society is dedicated to improving patient care through education, clinical practice, advancement of science and advocacy. For more information on radiation therapy, visit www.rtanswers.org. To learn more about ASTRO, visit www.astro.org.

Media Contacts
Michelle Kirkwood703-286-1600

Michelle Kirkwood | EurekAlert!
Further information:
http://www.astro.org

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>