Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blinded by Speed, Tiger Beetles Use Antennae to 'See' While Running

13.02.2014
Speed is blinding. Just ask the tiger beetle: This predatory insect has excellent sight, but when it chases prey, it runs so fast it can no longer see where it’s going.

Cornell University researchers have discovered that, unlike insects that wave their “feelers” around to acquire information, tiger beetles rigidly hold their antennae directly in front of them to mechanically sense their environments and avoid obstacles while running, according to a study published online in the journal Proceedings of the Royal Society B.

The findings raise questions about strategies used by other fast animals, such as birds of prey and some fish, to sense their environments when speed blinds. The research also has implications for autonomous vehicles that could use fixed antennae to detect obstacles.

“For an insect with really good vision that is active in the daytime normally, you would think it would not rely on antennae for sensing its environment,” said Cole Gilbert, Cornell professor of entomology and the paper’s senior author. Daniel Zurek, a postdoctoral researcher in Gilbert’s lab, is the paper’s first author.

“It has evolved important mechano-sensing behavior while running because it runs so fast,” Gilbert added.

In an earlier paper, Gilbert reported that tiger beetles run so fast, their eyes cannot capture enough light to form images of their prey. Therefore, the insects stop for just milliseconds to relocate prey, then start running again.

Gilbert and Zurek sought to learn how the running insects negotiate obstacles in their habitat, such as crevasses or grass stems, and what role their characteristically forward antennae play. To test this, the researchers set up a runway with a hurdle: In one experiment normal tiger beetles (of the species Cicindela hirticollis) ran the track and negotiated the hurdle, tilting their bodies up when their antennae touched the hurdle; in a second experiment, the researchers painted over the beetles’ eyes and found these blind beetles responded similarly. In the third test, they clipped the antennae of sighted beetles, and the insects smacked right into the hurdle.

The experiment revealed that for fast-moving tiger beetles, “eyes are not sufficient or necessary to avoid obstacles,” Gilbert said. “The antennae are held extremely rigid with the tips 1.5 millimeters off the ground, so they would potentially pick up any discontinuity in the surface.”

Gilbert questions how peregrine falcons and predatory fish compensate for blurry sight while speeding towards prey, potential research areas that no one has tested. The current study may provide a model for new questions. It’s possible, for example, that motion-blind fish perhaps employ their lateral line, sense organs found in aquatic vertebrates used to detect movement and vibration in water.

Also, autonomous vehicles could employ protruding antennae to sense their surroundings, as some of the first robots were fitted with, said Gilbert. “It would be cheaper than cameras,” he said. “For some applications, an antennae might be a solution, it is certainly one that worked evolutionarily for tiger beetles.”

The study was funded by the National Science Foundation

Joe Schwartz | Newswise
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>