Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birch Helps Wounds Heals Faster

24.01.2014
Freiburg pharmaceutical researchers elucidate the effect of a natural extract

Extracts from the birch tree have served for centuries as a traditional means of helping the damaged skin around wounds to regenerate more quickly.


Birch bark extract is prepared from the outer white layer of the tree. © Armin Scheffler

Prof. Dr. Irmgard Merfort from the Institute of Pharmaceutical Sciences of the University of Freiburg and her team have now explained the molecular mechanism behind the wound-healing effect of an extract from the outer white layer of the tree’s bark. The scientists published their findings in the journal Plos One.

The team cooperated with several other departments and institutes, such as a research group from the Institute of Molecular Medicine and Cell Research and the Institute of Experimental and Clinical Pharmacology of the University of Freiburg as well as a research group from the Dermatological Clinic of the University of Hamburg.

In the first phase of wound healing, the damaged skin cells release certain substances that lead to a temporary inflammation. They attract phagocytes, which remove foreign bacteria and dead tissue. The Freiburg scientists determined that the birch bark extract, in particular its main ingredient betulin, does in fact temporarily increase the amount of these inflammatory substances. The natural substance activates proteins that extend the half-life of the messenger ribonucleic acid (mRNA). A gene must first be translated into mRNA for the blueprint of a protein to be read by the genome. The substance triples the time in which the mRNA of a particular messenger remains stable. This messenger enables more of the protein in question, in this case the inflammatory substances, to be produced. In addition, the birch bark extract and betulin also stabilize the mRNA of further messengers.

In the second phase of wound healing the skin cells migrate and close the wound. The natural substance aids in this process: The birch cork extract and its components betulin and lupeol activate proteins that are involved in the restructuring of the actin cytoskeleton, which gives the cell its shape with the help of the structural protein actin. In this way, the substances from the birch cause keratinocytes – the most common type of cell in the outermost layer of skin – to migrate more quickly into the wound and close it.

Original Publication:
Ebeling, S./Naumann, K./Pollok, S./Vidal-y-Sy, S./Wardecki, T./Nascimento, J. M./ Boerries, M./Schmidt, G./Brandner, J. M./Merfort, I. (2013): From a traditional medicinal plant to a rational drug: understanding the clinically proven wound healing efficacy of birch bark extract. In: PLOS ONE. DOI: 10.1371/journal.pone.0086147
Article in uni’wissen:
www.pr.uni-freiburg.de/go/wundheilung
Contact:
Prof. Dr. Irmgard Merfort
Institute of Pharmaceutical Sciences
University of Freiburg
Phone: +49 (0)761 / 203-8373
E-Mail: irmgard.merfort@pharmazie.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/wundheilung

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

 
Latest News

New Ideas for the Shipping Industry

24.08.2016 | Event News

Lehigh engineer discovers a high-speed nano-avalanche

24.08.2016 | Physics and Astronomy

Streamlining accelerated computing for industry

24.08.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>