Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Artificial Blood Maker: EPO

First successful total synthesis of Erythropoietin

“Blood is quite a peculiar kind of juice“—that is what Mephisto knew, according to Goethe’s “Faust“. But if blood really is very special, then erythropoietin (EPO) must be a very special molecule, as it triggers the production of our red blood cells.

After ten years of intense research, American scientists have now succeeded in making a fully synthetic version of this special molecule. This achievement represents a landmark advance in the chemical synthesis of complex biological molecules from basic building blocks.

EPO is a hormone produced in the kidneys that induces the differentiation of bone marrow stem cells to erythrocytes (red blood cells). Upon sensing decreased oxygen in circulation, EPO is secreted to boost the production of red blood cells. EPO has found many therapeutic applications. Dialysis patients, whose haematosis is affected by renal failure, are treated with EPO and the drug is also given to cancer patients who have undergone chemotherapy or radiation therapy. Black sheep among racing cyclists, and other athletes, have abused EPO in an effort to improve their athletic performance.

Until now, only nature itself was able to synthesize EPO. For therapeutic use, the drug has to be produced biotechnologically in cell cultures. In a major breakthrough, a team led by Samuel J. Danishefsky at the Sloan-Kettering Institute for Cancer Research in New York has now produced a fully synthetic EPO by total synthesis in their lab. Because classical methods of protein synthesis were insufficient to build up this complex biomolecule, the scientists had to develop sophisticated new synthesis strategies to attain their objective.

EPO is not actually one compound but a large family of molecules. Known as glycoproteins, the structures are composed of a protein decorated with four carbohydrate sectors. The protein portion is always the same, as are the locations at which the carbohydrate domains are attached. Yet, in endogenous EPO protein, there are a wide variety of different carbohydrate sectors that may be appended to the protein. It has not been possible to access naturally occurring EPO as a homogeneous, pure molecule. By adopting the tools of chemical synthesis, the investigators were able to make, for the first time, pure “wild type” EPO glycoprotein incorporating the natural amino acid sequence and four carbohydrate sectors of strictly defined structure.

Extension of this strategy will enable scientists to make numerous versions of the molecule and to study how differences in the chemical structure of the carbohydrate domains may affect how the glycoprotein induces the production of red blood cells.

The structure of the synthetic EPO was verified by mass spectrometry. Tests using stem cells proved the effectiveness of the synthesized EPO: like its natural counterpart, the synthetic EPO triggered the formation of red blood cells from stem cells.

About the Author
Dr. Samuel Danishefsky is Centenary Professor of Chemistry at Columbia University and the Eugene Kettering Chair and Head of the Laboratory for Bioorganic Chemistry at the Sloan-Kettering Institute for Cancer Research in New York City. He is a member of the American Academy of Arts and Sciences and the National Academy of the Sciences and is a recipient of the Wolf Prize in Chemistry (with Prof. Gilbert Stork), the Franklin Medal in Chemistry, the Bristol Myers Squibb Lifetime Achievement Award in Chemistry, and the National Academy of Sciences Award in the Chemical Sciences. His research interests include the chemical synthesis of challenging small molecule and biologics-based compounds of therapeutic import.
Author: Samuel J. Danishefsky, Sloan-Kettering Institute for Cancer Research, New York (USA),
Title: At Last: Erythropoietin as a Single Glycoform
Angewandte Chemie International Edition, Permalink to the article:

Samuel J. Danishefsky | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>