Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A silk coat for diamonds makes sleek new imaging and drug delivery tool

28.01.2014
Silk and diamonds aren't just for ties and jewelry anymore. They're ingredients for a new kind of tiny glowing particle that could provide doctors and researchers with a novel technique for biological imaging and drug delivery.

The new particles, just tens of nanometers across, are made of diamond and covered in silk. They can be injected into living cells, and because they glow when illuminated with certain kinds of light, biologists can use them to peer inside cells and untangle the molecular circuitry that governs cellular behavior, or to study how cells react to a new drug.


The nanodiamond-silk material, which was implanted into living tissue for two weeks, left no signs of inflammation, suggesting that it's safe for the body.

Credit: Biomedical Optics Express


This is an illustration of nanodiamonds seeded on a marked silicon substrate and coated with silk film.

Credit: Asma Khalid

The silk-coated diamond particles could also potentially be used someday in the clinic, by allowing doctors to send infection-fighting antibiotics to a targeted area of the body.

A team of researchers from Australia and the United States describes this new hybrid diamond-silk material in a paper published today in The Optical Society's (OSA) journal Biomedical Optics Express.

Nanodiamonds similar to those in this study have been explored previously for their potential medical uses, but this is the first time silk has been incorporated with nanodiamonds, said Asma Khalid of the University of Melbourne, who is the first author of the Biomedical Optics Express paper. "This nanodiamond-silk hybrid material is important due to the potential it offers to the fields of bioimaging, biosensing and drug delivery," she explained.

Diamonds are crystals of carbon. But they can be made with defects—other atoms inserted in the crystal structure—and these defects allow them to do tricks that flawless diamonds can't, such as absorbing and reemitting light of certain wavelengths, a process called fluorescence. Because these fluorescent nanodiamonds are bright, stable, and harmless to living tissue – and can work at room temperature – researchers have been exploring their use in biological imaging and sensing. But the edges around the particles tend to be rough and may cause the nanodiamonds to become trapped inside cell membranes.

Previously, other researchers have addressed this problem by coating the particles with lipids, a class of molecules found in fats and waxes. According to the new study, however, a better solution is to cover the nanodiamonds in silk, which is transparent, flexible, compatible with biological tissue, and biodegradable, so it won't leave any harmful byproducts inside the body.

When the researchers tested their new hybrid material, they found that the silk remains transparent, meaning that it does not block the glow of the nanodiamonds. They also discovered that the silk not only preserves the optical properties of the nanodiamonds, but it enhances their brightness by two to four times. Finally, the new material appears to be safe for use in the body: it left no damaging effects even after spending two weeks implanted inside living tissue, suggesting that it is nontoxic and non-inflammatory, the researchers say.

In the future, the team envisions a range of nanodiamond-silk structures that could help researchers improve techniques for fighting infections in targeted areas of the body. A thin film of the new substance, carrying drugs, could be implanted directly into an infected area, minimizing the patient's exposure to the drugs. Silk can also be designed to degrade at a certain rate, which would allow clinicians to control the release of medications.

In addition to the University of Melbourne, the researchers are affiliated with the University of Sydney and the Silk Lab at Tufts University in Massachusetts.

Paper: "Synthesis and Characterization of Biocompatible Nanodiamond-Silk Hybrid Material," Khalid, A. et al., Biomedical Optics Express, Vol. 5, Issue 2, pp. 596-608 (2014).

EDITOR'S NOTE: High-resolution images are available to members of the media upon request. Contact Angela Stark, astark@osa.org.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Joseph A. Izatt of Duke University. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/BOE.

About OSA

Founded in 1916, The Optical Society (OSA) is the leading professional society for scientists, engineers, students and business leaders who fuel discoveries, shape real-world applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership programs, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of professionals in optics and photonics.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>