Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Key Gene for Brain Development

13.12.2012
Neurobiologists at the Research institute of Molecular Pathology (IMP) in Vienna have discovered one of the key genes required to make a brain. Mutations in this gene, called TUBB5, cause neurodevelopmental disease in children.

About one in ten thousand babies is born with an abnormally small head. The cause for this disorder – which is known as microcephaly – is a defect in the develoment of the embryonic brain. Children with microcephaly are severely retarded and their life expectancy is low. Certain cases of autism and schizophrenia are also associated with the dysregulation of brain size.


Comparison of the size of a normal brain (left) and a microcephalic brain (right). Drawing based on coronal sections of human brains.
Copyright: IMP


Genetically altered mouse embryo at the age of 12 days. Cells that produce the protein TUBB5 light up in green (most obviously in the developing brain).
Copyright: IMP

The causes underlying impaired brain development can be environmental stress (such as alcohol abuse or radiation) or viral infections (such as rubella) during pregnancy. In many cases, however, a mutant gene causes the problem.

David Keays, a group leader at the IMP, has now found a new gene which is responsible for Microcephaly. Together with his PhD-student Martin Breuss, he was able to identify TUBB5 as the culprit. The gene is responsible for making tubulins, the building blocks of the cell’s internal skeleton. Whenever a cell moves or divides, it relies on guidance from this internal structure, acting like a scaffold.

The IMP-researchers, together with collaborators at Monash University (Victoria, Australia), were able to interfere with the function of the TUBB5 in the brains of unborn mice. This led to massive disturbances in the stem cell population and impaired the migration of nerve cells. Both, the generation of large numbers of neurons from the stem cell reservoir and their correct positioning in the cortex, are essential for the development of the mammalian brain.

To determine whether the findings are also relevant in humans, David Keays collaborates with clinicians from the Paris-Sorbonne University. The French team led by Jamel Chelly, examined 120 patients with pathological brain structures and severe disabilities. Three of the children were found to have a mutated TUBB5-gene.

This information will prove vital to doctors treating children with brain disease. It will allow the development of new genetic tests which will form the basis of genetic counseling, helping parents plan for the future. By understanding how different genes cause brain disorders, it is hoped that one day scientists will be able to create new drugs and therapies to treat them.

The new findings by the IMP-researchers are published in the current issue of the journal “Cell Reports”. For David Keays, understanding the function of TUBB5 is the key to understanding brain development. “Our project shows how research in the lab can help improve lives in the clinic”, he adds.

The paper "Mutations in the â-tubulin Gene TUBB5 Cause Microcephaly with Structural Brain Abnormalities" is published on December 13, 2012, in the online-Journal Cell Reports.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology. The IMP is a founding member of the Campus Vienna Biocenter.
Contact
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
Mobile: (+43 1) 664 8247910
hurtl@imp.ac.at
Scientific Contact
David Keays, PhD
keays@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>