# Forum for Science, Industry and Business

Search our Site:

## How evolution shapes the geometries of life

18.02.2014
University of Maryland physicist and colleagues solve a longstanding biological puzzle

Why does a mouse's heart beat about the same number of times in its lifetime as an elephant's, although the mouse lives about a year, while an elephant sees 70 winters come and go? Why do small plants and animals mature faster than large ones? Why has nature chosen such radically different forms as the loose-limbed beauty of a flowering tree and the fearful symmetry of a tiger?

These questions have puzzled life scientists since ancient times. Now an interdisciplinary team of researchers from the University of Maryland and the University of Padua in Italy propose a thought-provoking answer based on a famous mathematical formula that has been accepted as true for generations, but never fully understood. In a paper published the week of Feb. 17, 2014 in the Proceedings of the National Academy of Sciences, the team offers a re-thinking of the formula known as Kleiber's Law. Seeing this formula as a mathematical expression of an evolutionary fact, the team suggests that plants' and animals' widely different forms evolved in parallel, as ideal ways to solve the problem of how to use energy efficiently.

If you studied biology in high school or college, odds are you memorized Kleiber's Law: metabolism equals mass to the three-quarter power. This formula, one of the few widely held tenets in biology, shows that as living things get larger, their metabolisms and their life spans increase at predictable rates. Named after the Swiss biologist Max Kleiber who formulated it in the 1930s, the law fits observations on everything from animals' energy intake to the number of young they bear. It's used to calculate the correct human dosage of a medicine tested on mice, among many other things.

But why does Kleiber's Law hold true? Generations of scientists have hunted unsuccessfully for a simple, convincing explanation. In this new paper, the researchers propose that the shapes of both plants and animals evolved in response to the same mathematical and physical principles. By working through the logic underlying Kleiber's mathematical formula, and applying it separately to the geometry of plants and animals, the team was able to explain decades worth of real-world observations.

"Plant and animal geometries have evolved more or less in parallel," said UMD botanist Todd Cooke. "The earliest plants and animals had simple and quite different bodies, but natural selection has acted on the two groups so the geometries of modern trees and animals are, remarkably, displaying equivalent energy efficiencies. They are both equally fit. And that is what Kleiber's Law is showing us."

Picture two organisms: a tree and a tiger. In evolutionary terms, the tree has the easier task: convert sunlight to energy and move it within a body that more or less stays put. To make that task as efficient as possible, the tree has evolved a branching shape with many surfaces – its leaves.

"The tree's surface area and the volume of space it occupies are nearly the same," said physicist Jayanth Banavarr, dean of the UMD College of Computer, Mathematical, and Natural Sciences. "The tree's nutrients flow at a constant speed, regardless of its size."

With these variables, the team calculated the relationship between the mass of different tree species and their metabolisms, and found that the relationship conformed to Kleiber's Law.

To nourish its mass, an animal needs fuel. Burning that fuel generates heat. The animal has to find a way to get rid of excess body heat. The obvious way is surface cooling. But because the tiger's surface area is proportionally smaller than its mass, the surface is not up to the task. The creature's hide would get blazing hot, and its coat might burst into flames.

So as animals get larger in size, their metabolism must increase at a slower rate than their volume, or they would not be able to get rid of the excess heat. If the surface area were the only thing that mattered, an animal's metabolism would increase as its size increased, at the rate of its mass to the two-thirds power. But Kleiber's Law, backed by many sets of observations, says the actual rate is mass to the three-quarters power.

Clearly there's a missing factor, and scientists have pored over the data in an attempt to find out what it is. Some have proposed that the missing part of the equation has to do with the space occupied by internal organs. Others have focused on the fractal, or branching, form that is common to tree limbs and animals' blood vessels, but added in new assumptions about the volume of fluids contained in those fractal networks.

The UMD and University of Padua researchers argue a crucial variable has been overlooked: the speed at which nutrients are carried throughout the animals' bodies and heat is carried away. So the team members calculated the rate at which animals' hearts pump blood and found that the velocity of blood flow was equal to the animals' mass to the one-twelfth power.

"The information was there all along, but its significance had been overlooked," said hydrologist Andrea Rinaldo of Italy's University of Padua and Switzerland's Ecole Polytechnique Federale. "Animals need to adjust the flow of nutrients and heat as their mass changes to maintain the greatest possible energy efficiency. That is why animals need a pump – a heart – and trees do not."

Plugging that information into their equation, the researchers found they had attained a complete explanation for Kleiber's Law.

"An elegant answer sometimes is the right one, and there's an elegance to this in the sense that it uses very simple geometric arguments," said physicist Amos Maritan of the University of Padua. "It doesn't call for any specialized structures. It has very few preconditions. You have these two lineages, plants and animals, that are very different and they arrive at the same conclusion. That is what's called convergent evolution, and the stunning result is that it's being driven by the underlying physics and the underlying math."

UMDCP/CMNS

Media contact:
Abby Robinson
abbyr@umd.edu
301-405-5845

Further information:
http://www.umd.edu

### More articles from Interdisciplinary Research:

Body Talk: A New Crowdshaping Technology Uses Words to Create Accurate 3D Body Models
27.07.2016 | Max-Planck-Institut für Intelligente Systeme

When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

### Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

### Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

### Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

### Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

### Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige