Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant robot helps prevent landslides

12.01.2005


Roboclimber


Fighting landslides is dangerous work, but help from space is on its way. Recent testing in Italy has shown that the four-tonne Roboclimber can secure slopes without endangering human lives, thanks to innovations from Europe’s space programmes.

"It was amazing to see how easily this huge robot managed to operate on a very steep slope to secure a rocky mountain wall,” said Guglielmo Berlasso, Director of the Civil Protection Office in the Friuli-Venezia Giulia region in Italy, where the demonstration took place.

Landslides are a big problem in Italy. More than 400 take place each year causing an estimated €1200 million of damage and often deaths. In the 20th century 5939 people were declared dead or missing due to landslides. Alfredo Sandovar from the European Commission was also present at the Roboclimber demonstration and expressed his great satisfaction with the results. “We are aware of the big dimension of this problem which is why we decided to finance this project,” he said. The setting for the first field demonstration of Roboclimber, one of the largest robots in the world, was the beautiful valley of Alta Val Torre, 25 km north of Udine in the Friuli-Venezia Giulia region of Italy. The mayor of Lusevera selected a near-vertical 30-metrer high rocky wall – similar to a possible landslide location – to enable the Roboclimber to be tested to the full.



The heavy Roboclimber arrived by truck and was installed by ICOP, the construction company that initially proposed the project and the prime contractor for the development. The robot was mounted on the mountain wall and held in place by two wires fixed at the top of the wall. Roberto Zannini from Teve, one of the inventors of the system together with the PMARlab of the University of Genova, supervised the tests designed to demonstrate the agility and efficiency of the robot.

Equipped with a special Comacchio 28 kW drilling machine with an impressive 2400 Newton metre torque, about 80 times stronger than a typical hand-held home electric drill, within minutes Roboclimber had drilled a more than 10-metre deep hole into the rock-solid wall, the first step in the typical procedure used to stabilize walls at risk of landslides.

The drilling was controlled remotely from a safe distance with a computer supplied by the Belgium company SAS and a wireless link. The technique was originally developed to control robots in space. An onboard web-camera enabled the operator to manoeuvre it into the correct position without difficulty, execute the drilling and insert the rods. Once each rod had been inserted the operator moved the robot to the next position, repeating the sequence of drilling and inserting rods. The speed at which the robot inserted rods and secured the wall was very impressive and much faster than the conventional methods used at present. Roboclimber can drill holes 20 meters long and with a diameter of up to 76 mm, in any rock and on any gradient. An innovative rod-house and robotic manipulator allows fully automatic loading and unloading of drilling rods.

At present consolidating risky slopes entails setting up high scaffolding and manually inserting stabilizing rods using hand held tools and drills; a very dangerous job as there is the constant risk of soil or rocks falling and hurting the operators. "The saving in cost and time depends on the type of wall, but can be huge," says Giorgio Pezzuto from D’Appolonia, which played a key role in getting together the right expertise and relevant space technologies.

Enzo Rizzi, Roboclimber project coordinator from ICOP, clarifies, "Assuming a typical landslide front of 5000 square metres requiring 5000 metres of deep drilling, we estimate that the Roboclimber system can save €75 000. In terms of time, the savings are huge: it takes a few hours to install Roboclimber while setting up a scaffold can take days and even weeks in critical situations." "But the most important factor is that with Roboclimber we can secure steep rocky walls without risking human health and lives. We can do it faster, more efficiently and yet much safer," he emphasises.

Roboclimber has been constructed using expertise and technology from Europe’s space programmes. Weighing 3800 kg, with four legs and with a square base of 2 metres by 2.5 metres, Roboclimber is one of the largest robots in the world, yet still very agile and easily controllable. The on-board control system includes algorithms based upon ESA advanced methodology for controlling satellites in space. "The participants are now evaluating the best approach to getting this innovation on the market," says Giorgio Pezzuto. "A new start-up company will guarantee the continuity and availability of our expertise. We intend to provide other services using Roboclimber technology as well as market the Roboclimber platform."

Says Pierre Brisson, head of ESA’s Technology Transfer and Promotion Office, "the experience gained from our many transfers shows that the use of innovative technologies from our space programmes often leads not only to improved solutions but also to new jobs in Europe. In this case our expertise and high-tech from space provide economical gain and better working conditions and safety: the best combination we could wish for."

Pierre Brisson | EurekAlert!
Further information:
http://www.esa.int/esaCP/SEM9R03AR2E_index_0.html
http://www.esa.int

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>