Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a truly clever Artificial Intelligence

04.02.2005


A pioneering new way of creating computer programs could be used in the future to design and build robots with minds that function like that of a human being, according to a leading researcher at The University of Reading.

Dr James Anderson, of the University’s Department of Computer Science, has developed for the first time the ‘perspective simplex’, or Perspex, which is a way of writing a computer program as a geometrical structure, rather than as a series of instructions.

Not only does the invention of the Perspex make it theoretically possible for us to develop robots with minds that learn and develop, it also provides us with clues to answer the philosophical conundrum of how minds relate to bodies in living beings.



A conventional computer program comprises of a list of instructions, and if one of those instructions goes missing or is damaged then the whole program crashes. However, with the Perspex, the program works rather like a neural network and is able to bridge gaps and continue running and developing even when it sustains considerable damage.

"All computer programs can be written in terms of the Perspex. Essentially, it is a new, geometrical computer instruction that looks like an artificial neuron. Any existing computer program can be compiled into a network of these neurons".

The Perspex links the geometry of the physical world with the structure of computations so, to the extent that mind is computable, the Perspex provides one solution to the centuries-old problem of how mind arises in physical bodies.

"Perspexes exist in a mathematical space called ‘perspex space’. Perspex space can describe the ordinary space we live in, along with all of the physical bodies that make up our space, and all of the minds that arise from physical bodies. It provides a model that is accurate enough for a robot to use to describe its own mind and body".

Perspex programs show the very human trait of periodic recovery and relapse when they are damaged; perhaps for the same reason. The Perspex tells us how mind can relate to body so the geometrical properties that govern a Perspex program’s injury and recovery also apply to us because our bodies exist in space. We share a common geometry, and this has implications for our minds and bodies. For the first time, the Perspex makes computer programs prone to injury, illness, and recovery like a human being. And a computer program that continues developing despite damaged, erroneous, and lost data means that, in the future, we could have computers that are able to develop their own minds despite, or because of, the rigours of living in the world.

“The Perspex allows global reasoning to be attained with just one initial instruction. So a Perspex program can operate on the whole of a problem before it attends to the myriad of detail. This is very much like human strategic thinking. It arises from the geometry of the Perspex, not from the specific detail of the program that is being run. This tells us that strategic thinking can be a property of the way our brains are constructed and is not necessarily to do with the substance of what we happen to be thinking about. It might be that some people are better at strategic thinking than others because of the geometry of their brains."

Craig Hillsley | alfa
Further information:
http://www.reading.ac.uk

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>