Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joining up memory

23.01.2014
Innovative electrodes allow new computer memory technologies to be compatible with existing circuitry

The computing industry faces constant demands to provide faster access to data and reduce power consumption. As current memory systems cannot meet these demands indefinitely, it is essential to develop entirely new technologies.

One strong contender is resistive random access memory (RRAM), which stores binary information by switching a dielectric material between conducting and non-conducting states.

A seamless transition to this new technology requires that RRAM memory cells be compatible with existing electronics, which are usually based on complementary metal oxide semiconductors (CMOS). Now, Xin Peng Wang and co-workers at the A*STAR Institute of Microelectronics, Singapore, have designed nickel-based electrodes that can couple RRAM to CMOS systems as well as reduce the current required to switch the RRAM between memory states1.

“One of the current most dominant memory systems, NAND flash, is expected to reach the limit of its scalability in 2017 or 2018,” says Wang. “We need to identify emerging non-volatile memory systems with higher densities, to make up the market. Recently, RRAM has attracted lots of attention due to its fast programming and erasing speeds, high endurance and good retention of data.”

Preventing neighboring RRAM cells from interfering with one another requires each cell to contain a selector made from a diode or transistor. Diode selectors have proved difficult to implement, therefore Wang and co-workers aimed to make RRAM stacks that were compatible with CMOS transistors.

To build the prototype RRAM cells, the researchers used three layers. They used physical vapor deposition to create a bottom electrode of nickel silicide or nickel germanosilicide, before adding a central dielectric switching layer of hafnium oxide, and a final top electrode of titanium nitride.

The researchers found that they could quickly and reliably switch the memory state of their cells, using very low operating currents. They suggest that the switching is enhanced by oxidation and reduction of nickel at the interfacial layer between the electrode and the dielectric. By providing more mobile oxygen species, these reactions might accelerate the formation and rupture of conductive filaments.

“Our electrodes can be easily formed on the source or drain terminal of a transistor,” says Wang. “In fact, our design effectively uses a CMOS transistor source or drain directly as the bottom electrode in a RRAM cell. This can lower the total cost and improve the scalability.”

In future, Wang and co-workers hope to shrink their nickel-based RRAM cells to a practical circuit scale to bring this promising technology into production.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Wang, X. P., Fang, Z., Chen, Z. X., Kamath, A. R., Tang, L. J. et al. Ni-containing electrodes for compact integration of resistive random access memory with CMOS. IEEE Electron Device Letters 34, 508–510 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Secure networks for the Internet of the future
25.08.2016 | Julius-Maximilians-Universität Würzburg

nachricht New microchip demonstrates efficiency and scalable design
23.08.2016 | Princeton University, Engineering School

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

3-D-printed structures 'remember' their shapes

29.08.2016 | Materials Sciences

From rigid to flexible

29.08.2016 | Life Sciences

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>