Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M study finds fertilization destabilizes global grassland ecosystems

17.02.2014
A new study led by University of Minnesota researchers demonstrates that fertilization of natural grasslands -- either intentionally or unintentionally as a side effect of global farming and industry -- is having a destabilizing effect on global grassland ecosystems.

Using a network of natural grassland research sites around the world called the Nutrient Network, the study represents the first time such a large experiment has been conducted using naturally occurring sites.

Led by Yann Hautier, a Marie Curie Fellow associated with both the Department of Ecology, Evolution, and Behavior at the University of Minnesota and the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich, the research team included U of M associate professors Eric Seabloom and Elizabeth Borer, and research scientist Eric Lind, along with scientists from institutions around the world including Andy Hector at Oxford University's Department of Plant Sciences. The findings were published on February 16 in the journal Nature.

The researchers found that plant diversity in natural ecosystems creates more stable ecosystems over time because of less synchronized growth of plants. "This is sometimes called the portfolio effect," says Seabloom. "If you have money in two investments and they're both stocks, they're going to track each other, but if one is a stock and one is a bond, they're going to respond differently to the overall economy and are more likely to balance each other."

The researchers collected plants from each of the sites, then sorted, dried, and weighed them to monitor the number of species of plants and total amount of plants, or "biomass," grown over time. They used this information to quantify species diversity and ecosystem stability. Says Hautier: "It was really striking to see the relationship between diversity and stability" and the similarities to data collected from artificial grasslands as part of a research effort called BioDepth, indicating that the results from natural grasslands of the Nutrient Network could be predicted from the results of artificial grasslands.

"The results of our study emphasize that we need to consider not just how productive ecosystems are but also how stable they are in the long-term, and how biodiversity is related to both aspects of ecosystem functioning," says Andy Hector.

The researchers also found that grassland diversity and stability are reduced when fertilizer is added. Fertilizers are intentionally used in grassland to increase livestock fodder. Fertilizer addition is also occurring unintentionally in many places around the world because nitrogen, a common fertilizer, is released into the atmosphere from farming, industry, and burning fossil fuels. Rainfall brings nitrogen out of the atmosphere and on to grasslands, changing the growth and types of plant species. This study placed measured amounts of fertilizer on a portion of their research sites and measured the changes that ensued.

"What we find is that the stabilizing effect [of species diversity] is lost, and we have less stable ecosystems when we have more nutrients coming into that system," says Borer. This, the researchers found, was due to more synchronized growth of plants, eliminating the "portfolio effect."

This study was made possible due to the formation of the Nutrient Network, also known as NutNet. Borer and Seabloom led a small group of scientists who created NutNet to standardize the way that ecology research is conducted. NutNet is a "grassroots campaign" that is supported by scientists who volunteer their time and resources. There are now 75 sites around the world that are run by more than 100 scientists participating in the NutNet experiment. "It's a great project and I'm happy to be a part of it," says Hautier. "The collaboration is fantastic."

NutNet scientists collected data for this study for three years, measuring plant growth in 41 sites on five continents, so the researchers feel confident that their results have global applications. "We can line it up and say - apples to apples - this is what's happening and it allows us to say it's a general effect. We know it's the same because we measured it in the same way in all these different places," says Lind. The group ultimately wants to continue experiments for at least ten years to gather information about long-term trends in plant species diversity and ecosystem stability, extinctions, species invasions, and many other important changes in the world's grasslands.

Stephanie Xenos | EurekAlert!
Further information:
http://www.umn.edu

More articles from Ecology, The Environment and Conservation:

nachricht New approach for environmental test on livestock drugs
27.07.2016 | Universität Zürich

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>