Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Simulating the impact of ocean acidification on stony corals

Ocean acidification and its consequences for marine life pose several pressing problems that are of concern to scientists all over the world. Scientists from the ZMT have developed a mathematical model with which they can simulate different scenarios of ocean acidification and the expected impacts on stony corals.
Ocean acidification and its consequences for marine life pose several pressing problems that are of concern to scientists all over the world. One alarming scenario is that stony corals may lose the ability to produce calcium carbonate skeletons and may no longer be able to form reefs with their structures that offer protection and habitats for an extraordinary variety of species. But how likely is such a development?

In order to make informed predictions, scientists must first understand the processes of skeletal development in single organisms and how these processes are impacted by perturbation factors. Researchers of the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen have developed a mathematical model that simulates in detail the calcification of coral polyps on the organism level. “With such a model, various scenarios of ocean acidification can be simulated and their effects on stony corals examined,” says the ecologist Sönke Hohn.

Atmospheric CO2 dissolves in seawater and forms carbonic acid. Rising carbon dioxide concentrations ultimately cause seawater to acidify. While today the surface water of the oceans has a pH of about 8.2, it is expected that this value will decrease to 7.8 by the year 2100. An acidic environment dissolves calcium carbonate. It has been known for some time that increasing CO2 levels reduce the ability of many marine organisms to produce their calcium carbonate skeletons. A study published in Science not long ago showed images of "naked" coral polyps that were exposed to pH values of 7.4 and received global attention. However, thus far it has remained unclear how the calcification process works under perturbed conditions. Scientists in Bremen have elucidated this process in more detail.

At the underside of their skin, polyps secrete calcium carbonate thus creating skeletal structures. All polyps of a coral colony are connected with each other via a layer of tissue. This separates the surrounding seawater from the fluid in which the calcareous skeleton is formed. Using a mathematical model, the scientists from the ZMT were able to prove that CO2 penetrates through the layers of tissue into the calcifying fluid. This suggests that despite the fact that corals actively regulate ion transport mechanisms, an increase in CO2 levels makes them unable to fight against CO2 diffusion.

The model describes the complex biochemical processes of ion exchanges and calcification in four compartments: the surrounding seawater, the polyp tissue, the stomach, and the calcifying fluid beneath the polyp. The model was based on data from various studies. But in particular a series of experiments carried out at the ZMT in the past were used, in which pH and calcium ion concentrations were measured below the polyp tissue using microprobes.

“Not even sophisticated laboratory experiments are sufficient to completely understand the process of calcification" says Agostino Merico, who helped to develop the modelling approach. “By simulating all relevant physiological processes, our model elucidates the complex processes and quantifies the effects of ocean acidification at the organism level." Thus, calculations with increased CO2 levels in the atmosphere, as they are expected in a worst-case scenario in 2100, would result in a 10% reduction of the calcification rates in stony corals. In a next step, the combined impact of ocean warming and acidification will be studied using the model.

Hohn, S., Merico, A. (2012) Modelling coral polyp calcification in relation to ocean acidification, Biogeosciences, 9, 4441-4454. doi: 10.5194/bg-9-4441-2012.

More information:

Dr. Sönke Hohn
Leibniz-Zentrum für Marine Tropenökologie
Tel: 0421 - 23800 105

Dr. Susanne Eickhoff | idw
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>