Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals the give and take of urban temperature mitigating technologies

10.02.2014
Life in a warming world is going to require human ingenuity to adapt to the new realities of Earth.

Greenhouse-gas induced warming and megapolitan expansion are both significant drivers of our warming planet. Researchers are now assessing adaptation technologies that could help us acclimate to these changing realities.


The deployment of cool roofs, roofs typically painted white, help mitigate summertime temperatures but in Florida and some Southwestern cities like Phoenix (pictured) the roofs also have a negative effect on rainfall.

Credit: Ken Fagan, Arizona State University

But how well these adaptation technologies – such as cool roofs, green roofs and hybrids of the two – perform year round and how this performance varies with place remains uncertain.

Now a team of researchers, led by Matei Georgescu, an Arizona State University assistant professor in the School of Geographical Sciences and Urban Planning and a senior sustainability scientist in the Global Institute of Sustainability, have begun exploring the relative effectiveness of some of the most common adaptation technologies aimed at reducing warming from urban expansion.

The work showed that end-of-century urban expansion within the U.S. alone and separate from greenhouse-gas induced climate change, can raise near surface temperatures by up to 3 C (nearly 6 F) for some megapolitan areas. Results of the new study indicate the performance of urban adaptation technologies can counteract this increase in temperature, but also varies seasonally and is geographically dependent.

In the paper, "Urban adaptation can roll back warming of emerging megapolitan regions," published in the online Early Edition of the Proceedings of the National Academy of Sciences, Georgescu and Philip Morefield, Britta Bierwagen and Christopher Weaver all of the U.S. Environmental Protection Agency, examined how these technologies fare across different geographies and climates of the U.S.

"This is the first time all of these approaches have been examined across various climates and geographies," said Georgescu. "We looked at each adaptation strategy and their impacts across all seasons, and we quantified consequences that extend to hydrology (rainfall), climate and energy. We found geography matters," he added.

Specifically, what works in California's Central Valley, like cool roofs, does not necessarily provide the same benefits to other regions of the U.S., like Florida, Georgescu said. Assessing consequences that extend beyond near surface temperatures, like rainfall and energy demand, reveals important tradeoffs that are oftentimes unaccounted for.

Cool roofs are a good example. In an effort to reflect incoming solar radiation, and therefore cools buildings and lessen energy demand during summer, painting one's roof white has been proposed as an effective strategy. Cool roofs have been found to be particularly effective for certain areas during summertime.

However, during winter these same urban adaptation strategies when deployed in northerly locations, further cool the environment and consequently require additional heating to maintain comfort levels. This is an important seasonal contrast between cool roofs (i.e. highly reflective) and green roofs (i.e. highly transpiring). While green roofs do not cool the environment as much during summer, they also do not compromise summertime energy savings with additional energy demand during winter.

"The energy savings gained during the summer season, for some regions, is nearly entirely lost during the winter season," Georgescu said.

In Florida, and to a lesser extent Southwestern states of the U.S., there is a very different effect caused by cool roofs.

"In Florida, our simulations indicate a significant reduction in precipitation. The deployment of cool roofs results in a 2 to 4 millimeter per day reduction in rainfall, a considerable amount (nearly 50 percent) that will have implications for water availability, reduced stream flow and negative consequences for ecosystems," he said. "For Florida, cool roofs may not be the optimal way to battle the urban heat island because of these unintended consequences."

Georgescu said the researchers did not intend to rate urban adaptation technologies as much as to shed light on each technology's advantages and disadvantages.

"We simply wanted to get all of the technologies on a level playing field and draw out the issues associated with each one, across place and across time."

Overall, the researchers suggest that judicious planning and design choices should be considered in trying to counteract rising temperatures caused by urban sprawl and greenhouse gasses. They add that, "urban-induced climate change depends on specific geographic factors that must be assessed when choosing optimal approaches, as opposed to one size fits all solutions."

Source:
Matei Georgescu, (480) 727-5986
Media contact:
Skip Derra, (480) 965-4823; skip.derra@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht New approach for environmental test on livestock drugs
27.07.2016 | Universität Zürich

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Designing ultrasound tools with Lego-like proteins

26.08.2016 | Life Sciences

Allergy Research: Response to House Dust Mites is Age-Dependent

26.08.2016 | Life Sciences

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>