Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Environmental Damage on the St. Lawrence River

More than half a century after the opening of the St. Lawrence Seaway in 1959, Clarkson University biologist Michael R. Twiss is among a corps of scientists charting the environmental change the Seaway and hydroelectric power projects have wrought.

Global commerce for the Great Lakes brought with it scores of invasive species. “A ship coming from the Baltic may carry an uninvited international hitchhiker,” says Twiss.

One of those hitchhikers, says Twiss, was the zebra mussel -- a small aquatic animal originally found in Russia. The mussel arrived around 1988 and began to breed. Since each female produces one million eggs a year, the burgeoning mussel population has had a drastic effect on the ecology of the Great Lakes.

For instance, the mussels changed the aquatic food supply by filtering phytoplankton, and markedly increased the clarity of Great Lakes water in the process. But the cleansing deprived other species of food.

“This caused lake trout to starve,” says Twiss, an associate professor of biology and director of the Great Rivers Center at Clarkson University. He said the mussels have also turned some beaches into “middens,” or dumps of empty mussel shells.

The zebra mussel population is controlled in part by the appetite of another species that also arrived via the Seaway – the round goby, a fish native to Eastern Europe’s Black and Caspian Seas. The goby showed up in 1990 and began to feast on the mussels. This kept the gobies well fed and helped to control the zebra mussel population, but produced yet another environmental shift. “Things like the sturgeon and the small mouth bass are thriving because they eat the goby,” Twiss explains.

It is a case of one thing leading to another, and Twiss wants to better understand how this constantly evolving system works. It is familiar territory; Twiss, a Yankee who grew up on the north shore of Lake Huron in Canada, has been around the Great Lakes all his life.

Now he is trying to find out what makes the system tick, with a particular focus on the little-studied 115-mile International Section of the St. Lawrence River which forms part of the boundary between New York State and Ontario. But Twiss and his research colleagues recognize that the environmental change wrought by invasive species can’t be easily reversed.

Rapid ecological change has been a constant in the region since the arrival of European settlers. Since the 1800s, more than 136 invasive fish, algae, invertebrate, and plant species have colonized the Great Lakes, according to the U.S. Geological Survey. An early arrival was the sea lamprey, an eel-like primitive fish with a vampire’s eating habits. The lamprey hooks its prey with its sucker mouth, drills a hole with its teeth, and then drains its victims of fluids and blood. Its prey includes salmon, lake trout, and sturgeon. The lamprey, which was discovered in Lake Ontario in the 1830s, may have entered through the Erie Canal.

But the St. Lawrence Seaway set off a new round of upheaval by allowing foreign invaders to reach the Great Lakes as stowaways in ship ballast, the extra water that ships carry to control stability in the water. When this water was dumped, invaders were set loose. The zebra mussel is believed to have arrived this way. New regulations now control where ballast can be emptied, but they came too late.

The Seaway was built to spur the economies of adjoining states and Canadian provinces by allowing ocean ships to travel unimpeded from the Atlantic to Duluth, Minn. Unfortunately, when the Seaway’s 50th anniversary arrived, the media focused on the undesirable changes it had brought.

One of these changes came with the damming of the Long Sault Rapids, which allowed the installation of locks to handle big ships. “They drowned the rapids,” says Twiss. This removed the natural fluctuations in water levels, so that cattail marshes took over sections of the river where fish once spawned.

It might seem logical to simply restore fluctuating water levels, and Twiss says several plans to do this have emerged. But Twiss cautions against haste. The danger is that fixing one problem may create another.

One sticking point is that wetlands are a natural reservoir for mercury because they aren’t flushed by changing water levels. The river has been dammed for half a century and a lot of mercury has accumulated. “It potentially would be released in bulk if the water were allowed to rise and fall more naturally,” Twiss says. In turn, this might render the fish in the river contaminated for human consumption, a warning not heeded by the burgeoning Bald Eagle population on the river.

It would amount to “yet another disturbance, when we already don’t understand how things work now,” Twiss adds. He is working with a colleague from the University of Ottawa to study the area where the rapids once lay. But even as they work, other changes may be taking place.

“It’s like bobsledding,” observes Twiss. “You can’t get off, and it changes direction so rapidly it is difficult to keep your bearings. For a scientist, it’s very challenging. Just when you think you understand the system, something else happens.”

Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world’s pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

Michael P. Griffin | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>