Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The CANON experiments – Tracking algal blooms by “going with the flow”

15.10.2010
In mid-September a small fleet of ships and robotic submersibles performed a novel experiment about 160 kilometers (100 miles) off the Central California coast.

The vessels spent most of their time circling around a floating robotic DNA lab, which drifted southward in the California Current.

This research, part of MBARI's CANON (Controlled, Agile, and Novel Observing Network) project, is all about "going with the flow"—tracking and studying how communities of microscopic marine organisms change as they are transported by ocean currents.

Conducting experiments in two very different settings

Led by MBARI biological oceanographer Francisco Chavez, during September, CANON researchers studied open-ocean water in the California Current, a meandering band of water that flows southeastward from Oregon to Northern Baja California. In October, a much larger cohort of researchers is studying the highly productive, but rapidly changing nearshore environment of Monterey Bay.

These two field experiments pose different challenges and opportunities for ocean researchers. Studying the offshore waters is challenging because humans and robotic vehicles must travel long distances and remain at sea for weeks at a time. Life in these offshore waters is often dominated by tiny organisms that are difficult to see even under a high-powered microscope, and often cannot be grown in the laboratory. These tiny organisms feed life in the ocean and have a strong influence on Earth's climate because they are so widespread.

Nearshore waters are more accessible to scientists and harbor dense populations of algae and other micro-organisms, as well as larger animals. However, this environment is affected by a web of complex interactions between the ocean, atmosphere, seafloor, land, runoff, and human activities. Because of these diverse influences, winds, currents, waves, and chemical and biological conditions often change rapidly, over periods of hours to days. This often makes it difficult for scientists to track and study ephemeral ocean features, such as algal blooms.

During both the nearshore and offshore experiments, CANON researchers simultaneously collected data on the physical and chemical properties of the ocean, along with detailed information on the algae, bacteria, and microscopic animals present. The researchers also measured the abundance of key organisms, determined how fast they were growing, and estimated how fast they were dying off or being consumed. Gathering all of this information simultaneously provides a more comprehensive picture of how the physical and chemical properties of the ocean affect the growth of entire communities of microscopic organisms.

Observing the microscopic life in moving water for more than a few hours is no easy feat. However, the CANON project builds on MBARI’s previous large-scale, multi-instrument, multi-institutional field programs, such as the Autonomous Ocean Sampling Network (AOSN). In contrast to these previous experiments, however, the CANON experiments focus on biological as well as physical processes.

The September experiment: Drifting with the California Current

The first CANON field experiment began on September 9, 2010, when MBARI’s flagship research vessel, the Western Flyer, headed westward from Moss Landing. The ship first headed west until it was 350 miles offshore, collecting water samples along the way. After analyzing these seawater samples and comparing them with satellite images of sea-surface temperature, the researchers attempted to locate the ever-changing boundaries of the California Current.

After completing this lengthy transect, the Western Flyer headed back toward the eastern (shoreward) boundary of the California Current, about 160 kilometers (100 miles) from the coast. There it met up with the research vessel Zephyr, host ship for MBARI's autonomous underwater vehicles (AUVs).

Once "on station" in the California Current, researchers on board the Western Flyer deployed a large, drifting buoy carrying a robotic DNA lab known as the Environmental Sample Processor (ESP). The Zephyr then deployed MBARI's upper-water-column AUV. At this point the field experiment began.

Drifting southward within the California Current, the ESP began automatically collecting water samples and analyzing the DNA of microscopic organisms within these samples. The Western Flyer followed the ESP as it drifted, allowing researchers to download data from the ESP and to collect water samples for later analysis on shore. Meanwhile, the AUV circled around the ESP, collecting detailed information about the physical and chemical properties of the water around it in real time.

The September CANON experiment involved a number of "firsts" for several research groups. For example, the ESP has been used in moored experiments for years, but this was the first time it collected data while drifting with the currents. In addition, the ESP was used not just to study genetic material, but to measure the amounts of important biological compounds generated by microscopic bacteria. This will help researchers understand how these bacteria are affecting the planktonic community and the rest of the food chain.

Similarly, programming MBARI's AUV to swim in circles (actually boxes) around a moving object (the drifting ESP) was a very complicated task. This provided a serious test for the AUV's control and scheduling system, known as T-REX.

The drift experiment showed how complex a problem CANON is tackling. Waters were moving in different directions near the surface and just below, changing even further with depth. Had only a few days of information been collected it might have been impossible to discern what was going on. After the third day, however, the experiment started to pay off and scientists started to better understand on the complexities of the physical and chemical properties of the water. Observations showed that the photosynthetic community was dominated by very small organisms, termed picoplankton, and they were floating in relatively high levels of nitrate. The nitrate, however, was not getting utilized, and the picoplankton seemed to be using ammonia as its nitrogen source. This type of activity is common in waters that are iron-limited. Information collected previously suggested that this phenomena might occur in this part of the world during autumn but the extent of the region, covering hundreds of square kilometers surprised the CANON scientists.

Combining diverse skills for a challenging project

This project involved engineers, marine operations staff, and researchers from MBARI and other institutions. The MBARI research team for the September experiment included physical biological oceanographers Francisco Chavez and John Ryan; marine biologists Alexandra Worden and Chris Scholin; and engineer Kanna Rajan.

Research organizations participating in the project include the University of Washington (genomics) and the Massachusetts Institute of Technology (genomics). The Central and Northern California Ocean Observing System (CeNCOOS) will help get information from these experiments out to policy makers, marine resource managers, and the public.

For more information on this story, please contact:

Judith Connor: (831) 775-1728, conn@mbari.org
Kim Fulton-Bennett: (831) 775-1835, kfb@mbari.org

Nancy Barr | MBARI
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2010/canon/canon_sept.html

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>