Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotechnology for sustainable water supply in Africa

01.12.2011
European-funded project targets sustainable water supply in Africa and other developing countries. Using biotechnology is seen as a simple and cost-efficient approach.

“Wastewater treatment is a socioeconomic issue rather than a purely technical one. Using biotechnology for this purpose will provide communities with a safe and healthy water supply and thus better quality of life. Local involvement is essential for success” says Sana Arousse, Project Manager responsible for WATERBIOTECH at ttz Bremerhaven.

The fundamental principle of the WATERBIOTECH project is to treat wastewater by means of biotechnology for reuse. The approach aims at compensating water scarcity and reducing the overexploitation of freshwater resources and will thus ensure a sustainable water supply for developing countries in Africa.

Although climate change is observable across the globe, its negative impacts are most obvious in Africa. Indeed, the continent is facing a variety of problems, whereby the most important and urgent ones to tackle are water scarcity, famine and disease. In addition, limited natural and financial resources as well as economic difficulties complicate the process of improving wastewater treatment techniques. The treatment of polluted waste water and its reuse is more or less the only way for African countries to avoid the exhaustion of limited water resources and to deal with water scarcity. Most developing countries cannot afford the majority of advanced and specialized systems used for the treatment and purification of wastewater. As a consequence, wastewater is inefficiently treated and therefore still contains pathogenic organisms, xenobiotics and heavy metals after treatment. Inefficiently treated wastewater is not only environmentally unfriendly and contaminates the groundwater, which is considered to be as precious as oil in this almost desertified continent, but additionally and more importantly endangers human health.

In the course of the WATERBIOTECH project, a consortium comprising 17 partners (8 European, 7 African, 1 from the Middle East and 1 international) is developing a practical approach using biotechnology as an affordable, cost-effective, efficient and environmentally friendly method for wastewater treatment in Africa. Sana Arousse, WATERBIOTECH Project Manager, defines biotechnological methods as “all the techniques that are governed by plants or micro-organisms which can detoxify contaminants in water, soils, sediment, and sludge.” Based on this principle, WATERBIOTECH combines traditional wastewater treatment techniques with more modern ones such as stabilization pond technology, maturation ponds, constructed wetlands, sequenching batch reactors, membrane technology, bio-desalination, or trickling filter. The advantage is that all these techniques are easily adaptable to local conditions and resources in developing African countries.

The target countries of the project are Algeria, Burkina Faso, Egypt, Ethiopia, Morocco, Senegal, South Africa, Tunisia, Ghana and Saudi Arabia.

ttz Bremerhaven is a provider of research services and performs application-based research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment and health.

Christian Colmer | idw
Further information:
http://www.ttz-bremerhaven.de/

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>