Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biotechnology for sustainable water supply in Africa

European-funded project targets sustainable water supply in Africa and other developing countries. Using biotechnology is seen as a simple and cost-efficient approach.

“Wastewater treatment is a socioeconomic issue rather than a purely technical one. Using biotechnology for this purpose will provide communities with a safe and healthy water supply and thus better quality of life. Local involvement is essential for success” says Sana Arousse, Project Manager responsible for WATERBIOTECH at ttz Bremerhaven.

The fundamental principle of the WATERBIOTECH project is to treat wastewater by means of biotechnology for reuse. The approach aims at compensating water scarcity and reducing the overexploitation of freshwater resources and will thus ensure a sustainable water supply for developing countries in Africa.

Although climate change is observable across the globe, its negative impacts are most obvious in Africa. Indeed, the continent is facing a variety of problems, whereby the most important and urgent ones to tackle are water scarcity, famine and disease. In addition, limited natural and financial resources as well as economic difficulties complicate the process of improving wastewater treatment techniques. The treatment of polluted waste water and its reuse is more or less the only way for African countries to avoid the exhaustion of limited water resources and to deal with water scarcity. Most developing countries cannot afford the majority of advanced and specialized systems used for the treatment and purification of wastewater. As a consequence, wastewater is inefficiently treated and therefore still contains pathogenic organisms, xenobiotics and heavy metals after treatment. Inefficiently treated wastewater is not only environmentally unfriendly and contaminates the groundwater, which is considered to be as precious as oil in this almost desertified continent, but additionally and more importantly endangers human health.

In the course of the WATERBIOTECH project, a consortium comprising 17 partners (8 European, 7 African, 1 from the Middle East and 1 international) is developing a practical approach using biotechnology as an affordable, cost-effective, efficient and environmentally friendly method for wastewater treatment in Africa. Sana Arousse, WATERBIOTECH Project Manager, defines biotechnological methods as “all the techniques that are governed by plants or micro-organisms which can detoxify contaminants in water, soils, sediment, and sludge.” Based on this principle, WATERBIOTECH combines traditional wastewater treatment techniques with more modern ones such as stabilization pond technology, maturation ponds, constructed wetlands, sequenching batch reactors, membrane technology, bio-desalination, or trickling filter. The advantage is that all these techniques are easily adaptable to local conditions and resources in developing African countries.

The target countries of the project are Algeria, Burkina Faso, Egypt, Ethiopia, Morocco, Senegal, South Africa, Tunisia, Ghana and Saudi Arabia.

ttz Bremerhaven is a provider of research services and performs application-based research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment and health.

Christian Colmer | idw
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>