Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne Particles Smuggle Pollutants to Far Reaches of Globe

19.11.2012
Symbiotic relationship between pollutants and airborne particles explains how city pollution ends up in Arctic

Pollution from fossil fuel burning and forest fires reaches all the way to the Arctic, even though it should decay long before it travels that far. Now, lab research can explain how pollution makes its lofty journey: rather than ride on the surface of airborne particles, pollutants snuggle inside, protected from the elements on the way. The results will help scientists improve atmospheric air-quality and pollution transport models.


Zelenyuk/PNNL

When airborne particles (green) form before pollutants known as PAHs (yellow) glob on, both the pollutants and particles dissipate quickly, as shown in the top row. But when the particles form in the presence of pollutants, which is what likely happens in nature, the long-lasting particles can take the pollutants for a long-distance ride (bottom)

The results also show that the particles that envelop pollutants also benefit from this arrangement. The new study in Environmental Science & Technology shows that the airborne particles, made from natural molecules mostly given off by live or burning plants, last longer with a touch of pollutant packed inside. The pollutants are known as polycyclic aromatic hydrocarbons, or PAHs, and are regulated by environmental agencies due to their toxicity.

"What we've learned through fundamental studies on model systems in the lab has very important implications for long-range transport of pollutants in the real world," said physical chemist Alla Zelenyuk of the Department of Energy's Pacific Northwest National Laboratory. "In this study, we propose a new explanation for how PAHs get transported so far, by demonstrating that airborne particles become a protective vessel for PAH transport."

Floating in the air and invisible to the eye, airborne particles known as secondary organic aerosols live and die. Born from carbon-based molecules given off by trees, vegetation, and fossil fuel burning, these airborne SOA particles travel the currents and contribute to cloud formation. Along for the ride are pollutants, the PAHs, that have long been thought to coat the particles on their surface.

For decades, atmospheric scientists have been trying to explain how atmospheric particles manage to transport harmful pollutants to pristine environments thousands of miles away from their starting point. The particles collected in areas such as the Arctic also pack higher concentrations of pollutants than scientists' computer models predict.

The predictions are based on the assumption that the particles are like liquid spheres, whose fluidity allows PAHs to escape. But they don't escape, and one recent advance has helped to pin down why PAHs are remaining stuck in their particle lairs. Zelenyuk and her colleagues at EMSL, DOE's Environmental Molecular Sciences Laboratory at PNNL, developed an ultra-sensitive instrument that can determine the size, composition and shape of individual particles.

Called SPLAT II, the instrument can analyze millions of tiny particles one by one. The ability of this novel instrument to characterize individual particles provides unique insight into their property and evolution.

Using SPLAT II to evaluate laboratory-generated SOA particles from alpha-pinene, the molecule that gives pine trees their piney smell, Zelenyuk has already discovered that SOA particles aren't liquid at all. Her team's recent work revealed they are more like tar -- thick, viscous blobs that are too solid to be liquid and too liquid to be solid.

Armed with this data, Zelenyuk and researchers from Imre Consulting in Richland and the University of Washington in Seattle set out to determine the relation between the SOA particle and the PAHs. Again they used alpha-pinene for the SOA. For the PAH, they used pyrene, a toxic pollutant produced by burning fossil fuels or vegetation such as forests.

They created two kinds of particles. The first kind exemplified the classical SOA: first they produced the particles with alpha-pinene and then coated them with pyrene. The second kind resembled what likely happens in nature: they mixed alpha-pinene and pyrene and let the particles form with both molecules present. Then they sent the particles through SPLAT and watched what happened to them over time.

With the pyrene-coated particles, the team found the PAH pyrene evaporating off the surface of the particle quickly, all of it gone after four hours. By the next day, the particle itself had shrunk by about 70 percent, showing that the alpha-pinene SOA also evaporates, although more slowly than pyrene.

When they created the particles in the presence of both SOA and PAH, the PAH evaporated much more slowly. Fifty percent of the original PAH still remained in the particle after 24 hours. In addition, the SOA particle itself stayed bulky, losing less than 20 percent of its volume.

These results showed the team that PAHs become trapped within the highly viscous SOA particles, where they remain protected from the environment. The symbiotic relationship between the atmospheric particles and pollutants surprised Zelenyuk: SOAs help PAHs travel the world, and the PAHs help SOAs survive longer.

Zelenyuk and her colleagues performed comparable experiments with other PAHs and SOAs and found similar results.

In the real world, Zelenyuk said, the evaporation will be even slower. These results will help modelers better simulate atmospheric SOA particles and transport of pollutants over long distances.

This work was supported by the Department of Energy Office of Science and PNNL's Chemical Imaging Initiative.

Reference: Alla Zelenyuk, Dan Imre, Josef Beránek, Evan Abramson, Jacqueline Wilson and Manish Shrivastava, Synergy between Secondary Organic Aerosols and Long-Range Transport of Polycyclic Aromatic Hydrocarbons, Environmental Science & Technology, Nov. 7, 2012, doi: 10.1021/es302743z. (http://pubs.acs.org/doi/abs/10.1021/es302743z)

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,500 staff, has an annual budget of nearly $1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more, visit the PNNL's News Center, or follow PNNL on Facebook, LinkedIn and Twitter.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Mary Beckman | Newswise Science News
Further information:
http://www.pnnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>