Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital photonic production: science and industry shape the future of production engineering

19.11.2012
The “Digital Photonic Production” research campus in Aachen offers local industry and science a skilled and responsive instrument with which to shape the future of production technology.

Support comes from the German Federal Ministry of Education and Research BMBF, which has provided financial backing of up to 30 million euros through its “Research Campus – Public-Private Partnerships for Innovation” funding initiative.


Load- and resource optimized wheel bearing manufactured using selective laser melting.
Fraunhofer ILT/Volker Lannert.


Rapid manufacturing of turbine components.
Fraunhofer ILT/Volker Lannert.

The Chair of Laser Technology LLT at RWTH Aachen University emerged from the national competition as one of ten winners, having coordinated a proposals consortium made up of industry partners and further RWTH institutes.

A new national center for digital photonic production is now being set up in Aachen, in collaboration with the Fraunhofer Institute for Laser Technology ILT, one of the most outstanding facilities for laser technology in Europe, and the initiatives and networks already existing in this field. The intensive cooperation between research and industry also means the chances are good for the founding of spin-off companies.

The aim of the BMBF’s nationwide German funding initiative “Research Campus – Public-Private Partnerships for Innovation” is to offer long-term support, at an early stage, to encourage universities, research institutes and businesses to work together in ten economically and socially relevant technology fields. Federal Research Minister Annette Schavan announced the ten winners of the initiative on September 25, 2012, among them the Digital Photonic Production research campus coordinated by Prof. Poprawe through the Chair of Laser Technology LLT. Over the course of the next 15 years, the research cluster will have up to an additional 2 million euros at its disposal each year, on top of its own contributions, with which to systematically drive this pioneering issue forward.

“From bits to photons to atoms”

This phrase sums up the technological potential of digital photonic production. On the basis of numerical data, light can be harnessed as a tool for manufacturing customized components of almost any complexity cost-effectively in small batches. Photon-based production methods for rapid manufacturing have been a research and development topic in Aachen for many years now. One of the research team’s major achievements was the development of the first process for the fabrication of metallic dental prostheses using selective laser melting, which subsequently led to the creation of new business models in dental technology. Professor Poprawe and his team received the NRW Innovation Award 2011 for developing the SLM additive manufacturing process, now widely deployed in many sectors of industry.

Automotive and aerospace companies are currently testing the potential of such production methods to optimize component functionality and the consumption of resources. The next step involves linking the laser-based production processes to the upstream design and construction plans and the downstream processes and logistic issues. The aims of the industrial partners include channeling tailor-made components in small quantities into construction plants designed for mass production, involving customers in the design of individual components, and systematically reducing existing spare parts stores.

Digital photonic production is not limited to additive manufacturing processes. Further production strategies being systematically pursued within the scope of the BMBF funding initiative include the generation of nanometer-thin structures via abrasion using ultra-short-pulse lasers, laser polishing of metals, glass and plastic, and the generation of three-dimensional microfluidic systems using selective laser etching.

The 15-year funding period for the research cluster is also intended to be used to establish the fundamental requirements that will make digital photonic production marketable in many sectors of manufacturing industry. The actual challenge is linking planning, construction, design, material selection, production and logistics in such a way that flexible series production using additive, abrasive and functionalizing laser processes is economically viable, irrespective of batch size. Digital photonic production opens up new business models and services for the manufacturing industry, such as co-creation and mass customization. Important future fields of application include mobility, energy, health, and information and communication technology.

National center of expertise based on four pillars

In addition to the activities of the BMBF research cluster, cooperation between research and industry in Aachen is also being furthered by a unique initiative of RWTH Aachen. A new site covering approx. 250,000 square meters has been prepared to allow companies to set up business in direct proximity to the university campus, giving them the possibility to work in collaboration with the university’s 19 specialist research departments.

One of these subject areas is digital photonic production. Initiatives that already exist in this area include the Integrative Production Technology for High-Wage Countries cluster of excellence (comprising 25 research establishments with an available budget of 40 million euros spread over 5 years) and the Fraunhofer innovation cluster Integrative Production Technology for Energy-Efficient Turbomachinery, TurPro (in which the 16 industrial partners include global players such as MAN Diesel & Turbo, Siemens PG, Rolls-Royce Germany, and MTU Aero Engines, and total research funding amounts to 10.25 million euros). As a member of these research consortia, the scientists in Aachen have, for example, developed innovative production technology that significantly reduces the manufacturing costs of blisks, or blade-integrated disks. Laser material deposition enables these essential components of aircraft engines and gas turbines to be manufactured much more efficiently, with material savings of up to 60 percent and a reduction of approx. 30 percent in the overall production time. The cluster of excellence has also developed automobile components for lightweight construction that are up to 40 percent lighter than conventional components when produced using SLM, including topologically optimized wheel bearings.

“Photonic process chains” symposium

At EuroMold 2012 in Frankfurt, the BMBF will be hosting a symposium entitled “Photonic process chains – the revolution in production?” on November 28-29 in collaboration with Fraunhofer ILT, VDMA, and DEMAT. Tool and mold manufacturers, automotive industry suppliers and manufacturers, medical technology companies and representatives from the turbomachinery and aircraft industries will deliver presentations on the possibilities and challenges of intelligently linked photonic production processes. At the heart of the presentations and discussions lies the necessity to comprehend the manufacture of a product not just in terms of the individual steps involved, but rather to view the entirety of the various processes involved within the context of the complete process chain.

Further Contact
Dipl.-Phys. Christian Hinke
Head of the Integrated Production Group at the Chair for Laser Technology LLT at RWTH Aachen University
Phone +49 241 8906-352
christian.hinke@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Phone +49 241 8906-0
Fax+49 241 8906-121

Axel Bauer | Fraunhofer Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Machine Engineering:

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

nachricht eldec generators CUSTOM LINE: Customized energy source for perfect induction heating
23.11.2016 | EMAG eldec Induction GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>