Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The World’s First Sterilizable Flexible Organic Transistors

The University of Tokyo (Tokyo, Japan) and the Japan Science and Technology Agency (JST) announced on 6th March 2012 that an international research team led by Professor Takao Someya has succeeded in manufacturing the world’s first flexible organic transistor on a polymeric film.

This organic transistor is robust under high temperature medical sterilization processes. The high thermal stability of the gate layer was confirmed by a cooperative structural analysis using a synchrotron radiation beam at Brookhaven National Laboratory’s (BNL) Synchrotron Light Source (NSLS).

The study is reported in BNL News and published online in Nature Communications on 6th March 2012*. This research is carried out as an ERATO Project of JST.

In a serious aging society with a declining birth rate, electronics are increasing their importance in health and medical areas. On this background, the expectation is getting higher on a flexible organic transistor, which is a soft electronic switch.

Manufacturing of a flexible transistor on a bio- compatible polymeric film is not too difficult. For practical implementation, however, high temperature stability and low operating voltages are challenging problems with the best match of its softness and bio-compatibility.

The international research team has succeeded in manufacturing an organic transistor on a polymeric film that has a high thermal stability up to 150°C or higher and the low driving voltage of 2 V with high mobility of 1.2 cm2V−1s−1 at the same time. The new type organic transistor can be sterilized in a standard sterilization process (150°C heat treatment).

The key technology to realize the heat resistant organic transistor with low driving voltage is the development of a new insulating film comprising an ultra-thin (--2 nm) and densely packed layer named self-assembled monolayer (SAM).

Research team seems to expect such applications as long implantable devices and some medical devices like a smart catheter, and thin film medical sensors.

Administrator Account | Research asia research news
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>