Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibration energy the secret to self-powered electronics

21.02.2014
A multi-university team of engineers has developed what could be a promising solution for charging smartphone batteries on the go — without the need for an electrical cord.

Incorporated directly into a cell phone housing, the team's nanogenerator could harvest and convert vibration energy from a surface, such as the passenger seat of a moving vehicle, into power for the phone. "We believe this development could be a new solution for creating self-charged personal electronics," says Xudong Wang, an assistant professor of materials science and engineering at the University of Wisconsin-Madison.

Wang, his Ph.D. student Yanchao Mao and collaborators from Sun Yat-sen University in China, and the University of Minnesota Duluth described their device, a mesoporous piezoelectric nanogenerator, in the January 27, 2014, issue of the journal Advanced Energy Materials.

The nanogenerator takes advantage of a common piezoelectric polymer material called polyvinylidene fluoride, or PVDF. Piezoelectric materials can generate electricity from a mechanical force; conversely, they also can generate a mechanical strain from an applied electrical field.

Rather than relying on a strain or an electrical field, the researchers incorporated zinc oxide nanoparticles into a PVDF thin film to trigger formation of the piezoelectric phase that enables it to harvest vibration energy. Then, they etched the nanoparticles off the film; the resulting interconnected pores — called "mesopores" because of their size — cause the otherwise stiff material to behave somewhat like a sponge.

That sponge-like material is key to harvesting vibration energy. "The softer the material, the more sensitive it is to small vibrations," says Wang.

The nanogenerator itself includes thin electrode sheets on the front and back of the mesoporous polymer film, and the researchers can attach this soft, flexible film seamlessly to flat, rough or curvy surfaces, including human skin. In the case of a cell phone, it uses the phone's own weight to enhance its displacement and amplify its electrical output.

The nanogenerator could become an integrated part of an electronic device — for example, as its back panel or housing — and automatically harvest energy from ambient vibrations to power the device directly.

Wang says the simplicity of his team's design and fabrication process could scale well to larger manufacturing settings. "We can create tunable mechanical properties in the film," he says. "And also important is the design of the device. Because we can realize this structure, phone-powering cases or self-powered sensor systems might become possible."

—Renee Meiller, 608-262-2481, meiller@engr.wisc.edu

Xudong Wang | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Power and Electrical Engineering:

nachricht Solar houses scientifically evaluated
30.08.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Cleanroom on demand
29.08.2016 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>