Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steam of hot flue gases saves energy at steel mills

16.01.2014
A new solution from Siemens takes advantage of hot flue gases from arc furnaces to generate steam. This steam can then be used for other steel mill processes or for generating electricity.

In the past, flue gases were usually not utilized, so the energy they carried was lost. The system consists of steam boilers, pipes, water tanks, and pumps and can be directly integrated into the existing flue gas cooling system. Theoretically, the system could entirely replace conventional cooling.



A feasibility study carried out at a steel mill in Turkey revealed potential savings of 44.5 kilowatt hours of electricity per ton of steel produced. That corresponds to around ten percent of the electrical energy that is normally required. If the steam were used to preheat the feed water for the steel mill's power plant, for example, the mill would save 45,000 tons of coal per year.

Electric arc furnaces melt steel scrap under arcs heated to a temperature of about 3,500 °C using high-voltage electricity. Depending on the specific furnace operation, up to one third of the energy used escapes in the flue gases. Normally these flue gases - which can be as hot as 1,800 °C - are extracted from the furnace through water-cooled pipes. Because this cooling water circulates within a closed system, it cannot be permitted to form steam. Cooling towers dissipate the excess heat.

This is where the solution developed by the experts at Siemens Metals Technologies comes in. The hot flue gas is diverted into a steam generator, where it flows around pipes filled with water. The heat from the gas turns the water into steam. A sophisticated system of nested heating surfaces ensures that heat is transferred from the flue gas as efficiently as possible.

Special recirculation pumps ensure that the steam boiler is adequately cooled. The system can handle fluctuations in flue gas temperature and volume, and it is specially designed to deal with the high levels of dust, some of which is corrosive, in the flue gas. Continuous steam production, such as that required for generating electricity, can be achieved through the installation of optional storage buffers known as "steam accumulators."

The heat from the flue gas can be recovered even more efficiently if the gas is directed through an "economizer" after it leaves the steam boiler. In the "economizer" the gas flows around a second system of pipes, where the remainder of its heat is used to preheat the feed water for the steam boiler.

The steam generation system has a modular construction and can be easily adapted to the specific requirements of each plant. This makes it especially easy to modernize existing steel mills.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Philippines’ microsatellite captures best-in-class high-resolution images
22.09.2016 | Hokkaido University

nachricht OLED microdisplays in data glasses for improved human-machine interaction
22.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>