Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free electron laser reaches 10 kW

02.08.2004


The Free-Electron Laser (FEL) achieved 10 kilowatts of infrared laser light, making it the most powerful tunable laser in the world.


The Free-Electron Laser (FEL), supported by the Office of Naval Research and located at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, achieved 10 kilowatts of infrared laser light in late July, making it the most powerful tunable laser in the world. The recently upgraded laser’s new capabilities will enhance defense and manufacturing technologies, and support advanced studies of chemistry, physics, biology, and more.

"No other laser can provide the same benefits to manufacturing, medical research, biology, and basic physics," said ONR’s Directed Energy Program Officer, Mr. Quentin Saulter. "The Navy has chosen the FEL because it has multi-mission capabilities. Its unique, high-power and 24-hour capabilities are ideal for Department of Defense, industrial, and scientific applications."

The FEL program began as the One-Kilowatt Demonstration FEL, which broke power records and made its mark as the world’s brightest high average power laser. It delivered 2.1 kilowatts (kW) of infrared light, more than twice it was initially designed to achieve, before it was taken offline in November 2001 for an upgrade to 10 kW. "Whenever a technology gains a factor of ten improvement in performance, the achievement opens the door to many new applications, some foreseen, and some are simply very pleasant surprises," said Christoph Leemann, Jefferson Lab Director. "We look forward to operating this exciting new machine and carrying out the many experiments planned for it."



The FEL provides intense beams of laser light that can be tuned to a precise wavelength, and which are more powerful than beams from a conventional laser. Conventional lasers are limited in the wavelength of light they emit by the source of the electrons (such as a gas or crystal) used within the laser. In the FEL, electrons are stripped from their atoms and then whipped up to high energies by a linear accelerator. From there, they are steered into a wiggler--a device that uses an electromagnetic field to shake the electrons, forcing them to release some of their energy in the form of photons. As in a conventional laser, the photons are bounced between two mirrors and then emitted as a coherent beam of light. However, FEL operators can adjust the wavelength of the laser’s emitted light by increasing or decreasing the energies of the electrons in the accelerator or the amount of shaking in the wiggler.

"As we cross the 10 kW milestone, our team at Jefferson Lab is grateful for the considerable support and encouragement we have received from the Navy, Air Force and our colleagues across the country," said Fred Dylla, Jefferson Lab FEL program manager.

ONR’s Quentin Saulter manages the FEL development effort in cooperation with the Naval Sea Systems Command (NAVSEA) Directed Energy and Electric Weapons Office, headed by Captain Roger McGinnis. ONR is also funding the operation and optimization of the 10 kW FEL, and has several experiments slated to begin in early fall. A laser materials damage study will be co-funded with the Office of the Secretary of Defense High Energy Laser Joint Technology Office (HEL-JTO). In another project, scientists from the Naval Research Laboratory will study laser propagation through the atmosphere, with an eye to new laser-based shipboard defense strategies.

The Navy is also interested in the ultraviolet and terahertz light that the FEL can produce at world-record powers. The Navy intends on using the lessons learned from the development of the 10 kW FEL to begin design and construction of a 100 kW FEL over the next four years. Eventually, the Navy plans on moving the 100 kW laser to an over water test site, and scaling the power up to megawatt levels.

Jennifer Huergo | EurekAlert!
Further information:
http://www.onr.navy.mil
http://www.jlab.org

More articles from Power and Electrical Engineering:

nachricht New welding process joins dissimilar sheets better
28.09.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Cooling buildings with solar heat
26.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>