Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity from the marshes

23.11.2012
An unexpected source of new, clean energy has been found: the Plant-Microbial Fuel Cell that can generate electricity from the natural interaction between living plant roots and soil bacteria.

The technique already works on a small scale and will soon be applied in larger marshland areas throughout the world. On 23 November, researcher Marjolein Helder will defend her PhD research on generating electricity via plants at Wageningen University, part of Wageningen UR. She has also founded a spin-off company called Plant-e with her colleague David Strik.

The Plant-Microbial Fuel Cell draws electricity from the soil while the plants continue to grow. Plants produce organic material via photosynthesis. The roots excrete up to 70 % of this material (unused) into the soil. Bacteria around the roots break down the organic residue, thereby forming a new source of electricity. The degradation processes causes electrons to be released. Marjolein Helder and her colleagues placed an electrode close to the bacteria to absorb these electrons and generate electricity via the potential difference thus created.

The Plant-Microbial Fuel Cell can currently generate 0.4 Watt per square metre of plant growth. This is more than is generated by fermenting biomass. In future, bio-electricity from plants could produce as much as 3.2 Watt per square metre of plant growth. This would mean that a roof measuring 100 m2 would generate enough electricity to supply a household (with an average consumption of 2,800 kWh/year). Plants of various species could be used, including grasses such as common cordgrass and, in warmer countries, rice.

Marshlands

Plant-Microbial Fuel Cells can be used on various scales. Initially on flat roofs or in remote areas in developing countries and later, when larger effective surface areas become feasible, central grids can be realised in areas of marshland. The researcher thinks that green energy-producing roofs will become a reality within a few years and production on a larger scale will follow suit soon after 2015. Although the technology is promising, it is not yet fully developed. Techniques for making the system renewable and sustainable still need improvement, and ways must be found to limit the amount of material used by the electrodes. Placing the electrodes in the optimum position around the plant causes electricity production to rise and material use to drop by two-thirds. In remote areas, the current capacity of Plant-Microbial Fuel Cell is already making them an economic rival for solar panels.

Marjolein Helder’s PhD research did not only focus on the technical aspects of the Plant-Microbial Fuel Cell, but also on how the technology could be integrated into society. It appears that this new renewable source is economically viable, will curb the pressure on the environment and is likely to be socially acceptable. It does not pollute the horizon (like wind turbines or ugly solar panels), does not interfere with nature (like dams) and the system does not compete with agricultural land in the debate on food and biofuels.

The Plant-Microbial Fuel Cell principle was discovered and patented in 2007 by the Environmental Technology Group at Wageningen University. Bert Hamelers conceived the concept, and David Strik carried out the first tests. Larger projects followed, such as the EU PlantPower project.

NOTE FOR EDITORS
More information is available from:
Marjolein Helder, tel. +31 (0)6-14918683, e-mail marjolein.helder@wur.nl
European research project PlantPower: www.plantpower.eu
Environmental technology at Wageningen University: www.ete.wur.nl
Spin-off company Plant-e: www.plant-e.com
or via Jac Niessen, scientific information officer at Wageningen UR, tel. +31 (0)317 485003, jac.niessen@wur.nl

The mission of Wageningen UR (University & Research centre) is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University and Van Hall Larenstein University of Applied Sciences to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6,500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

| Wageningen University
Further information:
http://www.wur.nl

More articles from Power and Electrical Engineering:

nachricht Spherical tokamak as model for next steps in fusion energy
25.08.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht An effective and low-cost solution for storing solar energy
25.08.2016 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>