Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Antarctic Ice Shelves Tearing Apart at the Seams

28.03.2012
A new study examining nearly 40 years of satellite imagery has revealed that the floating ice shelves of a critical portion of West Antarctica are steadily losing their grip on adjacent bay walls, potentially amplifying an already accelerating loss of ice to the sea.

The most extensive record yet of the evolution of the floating ice shelves in the eastern Amundsen Sea Embayment in West Antarctica shows that their margins, where they grip onto rocky bay walls or slower ice masses, are fracturing and retreating inland. As that grip continues to loosen, these already-thinning ice shelves will be even less able to hold back grounded ice upstream, according to glaciologists at The University of Texas at Austin’s Institute for Geophysics (UTIG).


Rifts along the northern shear margin of Pine Island Glacier (upper right of image). Credit: Michael Studinger, NASA's Operation IceBridge

Reporting in the Journal of Glaciology, the UTIG team found that the extent of ice shelves in the Amundsen Sea Embayment changed substantially between the beginning of the Landsat satellite record in 1972 and late 2011. These changes were especially rapid during the past decade. The affected ice shelves include the floating extensions of the rapidly thinning Thwaites and Pine Island Glaciers.

“Typically, the leading edge of an ice shelf moves forward steadily over time, retreating episodically when an iceberg calves off, but that is not what happened along the shear margins,” says Joseph MacGregor, research scientist associate and lead author of the study. An iceberg is said to calve when it breaks off and floats out to sea.

“Anyone can examine this region in Google Earth and see a snapshot of the same satellite data we used, but only through examination of the whole satellite record is it possible to distinguish long-term change from cyclical calving,” says MacGregor.

The shear margins that bound these ice shelves laterally are now heavily rifted, resembling a cracked mirror in satellite imagery until the detached icebergs finally drift out to the open sea. The calving front then retreats along these disintegrating margins. The pattern of marginal rifting and retreat is hypothesized to be a symptom, rather than a trigger, of the recent glacier acceleration in this region, but this pattern could generate additional acceleration.

“As a glacier goes afloat, becoming an ice shelf, its flow is resisted partly by the margins, which are the bay walls or the seams where two glaciers merge,” explains Ginny Catania, assistant professor at UTIG and co-author of the study. “An accelerating glacier can tear away from its margins, creating rifts that negate the margins’ resistance to ice flow and causing additional acceleration.”

Location of Amundsen Sea Embayment

The UTIG team found that the largest relative glacier accelerations occurred within and upstream of the increasingly rifted margins.

The observed style of slow-but-steady disintegration along ice-shelf margins has been neglected in most computer models of this critical region of West Antarctica, partly because it involves fracture, but also because no comprehensive record of this pattern existed. The authors conclude that several rifts present in the ice shelves suggest that they are poised to shrink further.

This research is sponsored in part by the National Science Foundation.

The article, titled “Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011”, appears in issue #209 of Journal of Glaciology.

Marc Airhart | EurekAlert!
Further information:
http://www.utexas.edu
http://www.jsg.utexas.edu/news/?p=3471

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

The first genome of a coral reef fish

29.09.2016 | Life Sciences

Gentle sensors for diagnosing brain disorders

29.09.2016 | Medical Engineering

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>