Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Thousands of Natural Gas Leaks Discovered in Boston

The City of Boston is riddled with more than 3,000 leaks from its aging natural-gas pipeline system, according to a new study by researchers at Boston (BU) and Duke Universities.
Their findings appear this week in the online edition of the peer-reviewed journal Environmental Pollution [Phillips, N.G., et al., Mapping urban pipeline leaks: Methane leaks across Boston, Environmental Pollution (2012),

Nathan Phillips, Boston University

Image showing relative volume of methane leaks at various locations around Boston.


The new study comes in the wake of devastating fires fueled by natural gas during Hurricane Sandy. Potential damage to gas pipeline pressure regulators, caused by flooding in Hurricane Sandy, has raised ongoing safety concerns in New York and New Jersey.

The researchers report finding 3,356 separate natural gas leaks under the streets of Boston. “While our study was not intended to assess explosion risks, we came across six locations in Boston where gas concentrations exceeded the threshold above which explosions can occur,” said Nathan Phillips, associate professor in BU’s Department of Earth and Environment and co-author of the study.

Nationally, natural gas pipeline failures cause an average of 17 fatalities, 68 injuries, and $133M in property damage annually, according to the U.S. Pipeline and Hazardous Materials Safety Administration. In addition to the explosion hazard, natural gas also poses a major environmental threat: Methane, the primary ingredient of natural gas, is a powerful greenhouse gas that degrades air quality. Leaks in the United States contribute to $3 billion of lost and unaccounted for natural gas each year.

“Repairing these leaks will improve air quality, increase consumer health and safety, and save money,” said co-author Robert B. Jackson, Nicholas Professor of Global Environmental Change at Duke. “We just have to put the right financial incentives into place.”

Phillips and Jackson’s teams collaborated with industry partners Robert Ackley of Gas Safety, Inc., and Eric Crosson of Picarro, Inc., on the study. They mapped the gas leaks under Boston using a new, high-precision methane analyzer installed in a GPS-equipped car. Driving all 785 road miles within city limits, the researchers discovered 3,356 leaks.

The leaks were distributed evenly across neighborhoods and were associated with old cast-iron underground pipes, rather than neighborhood socioeconomic indicators. Levels of methane in the surface air on Boston’s streets exceeded fifteen times the normal atmospheric background value.

Like Boston, other cities with aging pipeline infrastructure may be prone to leaks. The researchers recommend coordinated gas-leaks mapping campaigns in cities where the infrastructure is deemed to be at risk. The researchers will continue to quantify the health, safety, environmental, and economic impacts of the leaks, which will be made available to policymakers and utilities as they work to replace and repair leaking natural gas pipeline infrastructure.

Lucy Hutyra, Assistant Professor and Max Brondfield, technician, worked with Phillips on this study at Boston University. At Duke, PhD student Adrian Down, postdoctoral researcher Kaiguang Zhao, and research scientist Jon Karr assisted Jackson with his research.

The study was supported by the Barr Foundation, Conservation Law Foundation, National Science Foundation, Picarro, Inc., Boston University and Duke University.

About Boston University

Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.

Link to article:
Author contacts:
Nathan Phillips, associate professor
Department of Earth & Environment
Boston University
(617) 353-2841
Robert B. Jackson, professor
Nicholas School of the Environment
Duke University
(919) 660-7408

Sara Rimer | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>