Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists call for new stewardship of the deep ocean: Earth's last frontier

Growing industrialization threatens the deep ocean's ecosystems, considered key to the health of the planet

The deep ocean, the largest domain for life on earth, is also its least explored environment. Humans are now encroaching more vigorously than ever into the ocean's deep regions, exploiting the deep's resources and placing its wealth of vibrant habitats and natural services for the planet at risk.

Lisa Levin, a biological oceanographer at Scripps Institution of Oceanography at UC San Diego, believes the vital functions provided by the deep sea—from carbon sequestration to nurturing fish stocks—are key to the health of the planet. As humans ramp up exploitation of deep-sea fish, energy, minerals, and genetic resources, a new "stewardship mentality" across countries, economic sectors, and disciplines is required, Levin says, for the future health and integrity of the deep ocean.

Levin and several other experts will describe this need during "Deep-Ocean Industrialization: A New Stewardship Frontier" at the annual meeting of the American Association for the Advancement of Science (AAAS) in Chicago at a news briefing (noon, Central Standard Time, Sunday, Feb. 16, AAAS Newsroom Headquarters: St. Gallen 2 room, Swissôtel, 323 East Upper Wacker Drive, Chicago, Ill. 60601) and scientific presentation (1:30-4:30 p.m. CST, Sunday, Feb. 16, Columbus EF at the Hyatt Regency Chicago, 151 East Wacker Drive, Chicago, Ill., 60601).

As the human population has more than doubled in the past 50 years, demand for food, energy, and raw materials from the sea has risen with it.

"At the same time, human society has undergone tremendous changes and we rarely, if ever, think about these affecting our ocean, let alone the deep ocean," said Levin, who has conducted research on the deep sea for more than 30 years. "But the truth is that the types of industrialization that reigned in the last century on land are now becoming a reality in the deep ocean."

"As we exhaust many coastal stocks, commercial fishers have turned towards deeper waters," said Levin.

Beyond marine life depletion, the deep sea also is being threatened by the search for new sources for energy and precious materials. Oil and gas exploration now routinely targets seabeds in more than a thousand meters of water depth. Demand for modern technology devices—from cell phones to hybrid car batteries—has fueled a push by the mining sector to deep waters in search of new sources of metals and other materials.

"Vast tracts of deep seabed are now being leased in order to mine nodules, crusts, sulfides, and phosphates rich in elements demanded by our advanced economy," said Levin. She added that rising carbon dioxide emissions are exposing deep-sea ecosystems to additional stress from climate change impacts that include warmer temperatures, altered food supplies, and declining pH and oxygen levels.

"Extraction from the deep sea is a tradeoff. Is the value of what we're extracting greater than the damage?" asks Linwood Pendleton, director of the Ocean and Coastal Policy Program at the Nicholas Institute for Environmental Policy Solutions at Duke University. "Are there ways to extract that might be more economically costly but have lower ecological impact? How can we repair the considerable damage that has already been done to the sea floor through trawling, pollution, and other practices? These are questions that we need to answer before industrial activity gets ahead of scientific understanding."

The deep sea holds a nearly infinite amount of genetic diversity, some of which could provide novel materials or future therapeutics to treat human diseases, but if not protected, these could be disturbed or lost before we discover them.

The need to preserve deep-sea ecosystems in the face of growing industrialization of the deep ocean, Levin says, requires a new "precautionary" mode of thinking about the deep sea that promotes sustainable, ecosystem-based management across industrial sectors and governance realms.

"We need international cooperation and an entity that can develop and oversee deep-ocean stewardship," said Levin. "We also need multiple sources of research funding that can help provide the scientific information that we need to manage the deep sea. All of this will require efforts that bridge several disciplines and engage stakeholders in these discussions."

"It is imperative to work with industry and governance bodies to put progressive environmental regulations in place before industry becomes established, instead of after the fact," said Cindy Lee Van Dover, director of the Duke University Marine Laboratory. "One hundred years from now, we want people to say 'they got this right based on the science they had, they weren't asleep at the wheel.'"

"From a legal perspective, the deep ocean is filled with contradictions. Deep sea mineral resources located beyond national boundaries are part of the 'Common Heritage of Mankind' under international law, but the fish and octopi that swim just above the seafloor are not," said Kristina Gjerde, senior high seas advisor to IUCN—the International Union for Conservation of Nature. "To prevent harm we can never hope to repair, precautionary rules need to be in place to guide all human uses of the deep ocean across boundaries and across sectors."

Other AAAS participants include Samantha Smith (Nautilus Minerals) and Bronwen Currie (National Marine Information and Research Center). The scientific symposium is sponsored by the Deep-Ocean Stewardship Initiative and the Center for Marine Biodiversity and Conservation at Scripps.

With its decades-long history of deep-sea exploration, Scripps is recognized as a world leader in investigating the science of the deep ocean, from exploring the deep's geological features and researching its exotic marine life inhabitants, to development of sensor and sampling technologies.

For more information or to get involved:

Mario Aguilera | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>