Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ridges on Mars suggest ancient flowing water

30.01.2013
Ridges in impact craters on Mars appear to be fossils of cracks in the Martian surface, formed by minerals deposited by flowing water. Water flowing beneath the surface suggests life may once have been possible on Mars.

Networks of narrow ridges found in impact craters on Mars appear to be the fossilized remnants of underground cracks through which water once flowed, according to a new analysis by researchers from Brown University.


Fossilized hydrology
A 3-D image of an impact crater in the Nilosyrtis area on the Martian surface shows long pipe-like ridges, fossilized evidence of ancient subsurface water flow. Credit: NASA Mars Reconnaissance Orbiter

The study, in press in the journal Geophysical Research Letters, bolsters the idea that the subsurface environment on Mars once had an active hydrology and could be a good place to search for evidence of past life. The research was conducted by Lee Saper, a recent Brown graduate, with Jack Mustard, professor of geological sciences.

The ridges, many of them hundreds of meters in length and a few meters wide, had been noted in previous research, but how they had formed was not known. Saper and Mustard thought they might once have been faults and fractures that formed underground when impact events rattled the planet’s crust. Water, if present in the subsurface, would have circulated through the cracks, slowly filling them in with mineral deposits, which would have been harder than the surrounding rocks. As those surrounding rocks eroded away over millions of years, the seams of mineral-hardened material would remain in place, forming the ridges seen today.

Mineral deposits mark subsurface water flow

A photo taken by the Mars Reconnaissance Orbiter shows ridges formed by fossilized subsurface water flow. Orientation of the ridges, mapped by researchers, is consistent with fractures formed by impact events. Credit: NASA and Mustard Lab/Brown UniversityTo test their hypothesis, Saper and Mustard mapped over 4,000 ridges in two crater-pocked regions on Mars, Nili Fossae and Nilosyrtis. Using high-resolution images from NASA’s Mars Reconnaissance Orbiter, the researchers noted the orientations of the ridges and composition of the surrounding rocks.

The orientation data is consistent with the idea that the ridges started out as fractures formed by impact events. A competing hypothesis suggests that these structures may have been sheets of volcanic magma intruding into the surrounding rock, but that doesn’t appear to be the case. At Nili Fossae, the orientations are similar to the alignments of large faults related to a mega-scale impact. At Nilosyrtis, where the impact events were smaller in scale, the ridge orientations are associated with each of the small craters in which they were found. “This suggests that fracture formation resulted from the energy of localized impact events and are not associated with regional-scale volcanism,” Saper said.

Importantly, Saper and Mustard also found that the ridges exist exclusively in areas where the surrounding rock is rich in iron-magnesium clay, a mineral considered to be a telltale sign that water had once been present in the rocks.

“The association with these hydrated materials suggests there was a water source available,” Saper said. “That water would have flowed along the path of least resistance, which in this case would have been these fracture conduits.”

As that water flowed, dissolved minerals would have been slowly deposited in the conduits, in much the same way mineral deposits can build up and eventually clog drain pipes. That mineralized material would have been more resistant to erosion than the surrounding rock. And indeed, Saper and Mustard found that these ridges were only found in areas that were heavily eroded, consistent with the notion that these are ancient structures revealed as the weaker surrounding rocks were slowly peeled away by wind.

Taken together, the results suggest the ancient Martian subsurface had flowing water and may have been a habitable environment.

“This gives us a point of observation to say there was enough fracturing and fluid flow in the crust to sustain at least a regionally viable subsurface hydrology,” Saper said. “The overarching theme of NASA’s planetary exploration has been to follow the water. So if in fact these fractures that turned into these ridges were flowing with hydrothermal fluid, they could have been a viable biosphere.”

Saper hopes that the Curiosity rover, currently making its way across its Gale Crater landing site, might be able to shed more light on these types of structures.

“In the site at Gale Crater, there are thought to be mineralized fractures that the rover will go up and touch,” Saper said. “These are very small and may not be exactly the same kind of feature we studied, but we’ll have the opportunity to crush them up and do chemical analysis on them. That could either bolster our hypothesis or tell us we need to explore other possibilities.”

The research was supported by a grant from NASA’s Rhode Island Space Grant Consortium and through a NASA subcontract with the Applied Physics Lab at Johns Hopkins University.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:
http://www.brown.edu
http://news.brown.edu/pressreleases/2013/01/marswater

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>