Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Evidence of Geological ‘Facelift’ in the Appalachians

01.02.2013
How does a mountain range maintain its youthful, rugged appearance after 200 million years without tectonic activity? Try a geological facelift – courtesy of the earth’s mantle.

Researchers from North Carolina State University noticed that a portion of the Appalachian Mountains in western North Carolina near the Cullasaja River basin was topographically quite different from its surroundings.

They found two distinct landscapes in the basin: an upper portion with gentle, rounded hills, where the average distance from valley to mountain top was about 500 feet; and a lower portion where the valley bottom to ridgeline elevation difference was 2,500 feet, hills were steep, and there was an abundance of waterfalls. The researchers believed they could use this unique topography to decipher the more recent geologic history of the region.

The Appalachian mountain range was formed between 325 to 260 million years ago by tectonic activity – when tectonic plates underneath the earth’s surface collided and pushed the mountains up. Around 230 million years ago, the Atlantic Ocean basin began to open, and this also affected the regional topography. But geologists knew that there hadn’t been any significant tectonic activity in the region since then.

“Conventional wisdom holds that in the absence of tectonic activity, mountainous terrain gets eroded and beveled down, so the terrain isn’t as dramatic,” says Sean Gallen, NC State graduate student in marine, earth and atmospheric sciences. “When we noticed that this area looked more like younger mountain ranges instead of the older, rounded, rolling topography around it, we wanted to figure out what was going on.”

Gallen and Karl Wegmann, an assistant professor of marine, earth and atmospheric sciences at NC State, decided to look at the waterfalls in the area, because they would have formed as the topography changed. By measuring the rate of erosion for the falls they could extrapolate their age, and therefore calculate how long ago this particular region was “rejuvenated” or lifted up. They found that these particular waterfalls were about 8 million years old, which indicated that the landscape must have been raised up around the same time.

But without tectonic activity, how did the uplift occur? Gallen and Wegmann point to the earth’s mantle as the most likely culprit. “The earth’s outer shell is the crust, but the next layer down – the mantle – is essentially a very viscous fluid,” Wegmann says. “When it’s warm it can well up, pushing the crust up like a big blister. If a heavy portion of the crust underneath the Appalachians ‘broke off,’ so to speak, this area floated upward on top of the blister. In this case, our best hypothesis is that mantle dynamics rejuvenated the landscape.”

The researchers’ findings appear in Geological Society of America Today. Del Bohnenstiehl, NC State associate professor of marine, earth and atmospheric sciences, contributed to the work.

Note to editors: Abstract follows.

“Miocene rejuvenation of topographic relief in the southern Appalachians”

Authors: Sean F. Gallen, Karl W. Wegmann, and DelWayne R. Bohnenstiehl, North Carolina State University

Published: Geological Society of America Today

Abstract:
Conventional wisdom holds that the southern Appalachian Mountains have not experienced a significant phase of tectonic forcing for > 200 m.y.; yet, they share many characteristics with tectonically active settings, including locally high topographic relief, steep slopes, incised river gorges and frequent mass-wasting events. Two competing hypotheses are commonly used to explain their modern topographic expression. One suggests that relief is largely controlled by variable lithologic resistance to weathering and that their modern form has long persisted in a dynamic equilibrium. The second postulates that their relief is a product of recent rejuvenation, driven either by climate change or the epeirogenic uplift of the land surface driven by mantle forcing. Within portions of the Cullasaja River Basin of the southern Appalachians, we show that relief has increased by > 150% since the Miocene. Evident within the basin are a set of retreating knickpoints that delineate a rugged actively incising landscape from lower-relief relict topography. Constraints on the timing of knickpoint entry into the basin suggest that the process of landscape rejuvenation began well prior to the late Cenozoic (

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Earth Sciences:

nachricht Volcanic eruption masked acceleration in sea level rise
26.08.2016 | National Science Foundation

nachricht Biomass turnover time in ecosystems is halved by land use
23.08.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>