Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

North and Tropical Atlantic Ocean Bringing Climate Change to Antarctica

23.01.2014
The gradual warming of the North and Tropical Atlantic Ocean is contributing to climate change in Antarctica, a team of New York University scientists has concluded.

The findings, which rely on more than three decades of atmospheric data and appear in the journal Nature, show new ways in which distant regional conditions are contributing to Antarctic climate change.


Photograph By: Jefferson Beck/NASA IceBridge, National Science Foundation

The gradual warming of the North and Tropical Atlantic Ocean is contributing to climate change in Antarctica, a team of NYU scientists has concluded. The findings, which rely on more than three decades of atmospheric data, show new ways in which distant regional conditions are contributing to Antarctic climate change. Below, several glaciers in the Antarctic Peninsula pass between sharp mountain peaks and converge in a single calving front, as seen by Operation IceBridge while returning from a survey of the Ronne Ice Shelf on Nov. 1, 2012. NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge.

“Our findings reveal a previously unknown—and surprising—force behind climate change that is occurring deep in our southern hemisphere: the Atlantic Ocean,” says Xichen Li, a doctoral student in NYU’s Courant Institute of Mathematical Sciences and the study’s lead author. “Moreover, the study offers further confirmation that warming in one region can have far-reaching effects in another.”

Over the past few decades, Antarctica has experienced dramatic climate change, with ist peninsula exhibiting the strongest warming of any region on the planet. During its summer, Antarctic changes have been attributed to greenhouse gas increase and stratospheric ozone loss. However, less clear are the forces behind climate changes that occur during its winter. In addition, the effects of these changes during the cold season are complex, further stifling efforts to find the atmospheric culprit.

It has long been known that the region’s climate is affected, in part, by changes in the distant Pacific Ocean climate. But the phenomena brought on by the Pacific have shorter-term influences—for instance, due to El Niño. Less understood are the longer-term forces that have produced warming along the Antarctic Peninsula or the sea-ice redistribution in the southern hemisphere’s winter over many decades.

To address this question, the NYU researchers focused on a different candidate: the Atlantic Ocean, which has been overlooked as a force behind Antarctic climate change.

Specifically, the scientists studied the North and Tropical Atlantic’s Sea Surface Temperature (SST) variability—changes in the ocean’s surface temperature—focusing on the last three decades. This metric, the Atlantic Multidecadal Oscillation (AMO), had previously not been considered in seeking explanations for Antarctic climate change.

Using a time-series analysis, in which the scientists matched changes in the North and Tropical Atlantic’s SST with subsequent changes in Antarctic climate, the researchers found strong correlations. Specifically, they observed that warming Atlantic waters were followed by changes in sea-level pressure in the Antarctic’s Amundsen Sea. In addition, these warming patterns also preceded redistribution of sea ice between the Antarctic’s Ross and Amundsen-Bellingshausen-Weddell Seas.

David Holland, co-author of the study, a professor at NYU's Courant Institute and past director of NYU's Center for Atmospheric Ocean Science, explained that the research consisted of two parts, which incorporated both the use of observational data and computer modeling.

The first part of the study, using the observational data, found a link, or correlation, between the Atlantic and Antarctic data sets. But a correlation means simply that two things appear to happen in conjunction and does not explain what may be causing a phenomenon.

The second used a global atmospheric model, which allowed the researchers to create a simulated warming of the North Atlantic. The model responded, as the researchers had suspected, by "changing" the climate in Antarctica.

"While our data analysis showed a correlation, it was the use of a state-of-the-art computer model that allowed us to see that North Atlantic warming was causing Antarctic climate change and not vice versa," he said.

The study’s findings raise a number of deeper questions, such as, is Antarctic sea-ice change fundamentally different from the well-reported changes in the Arctic? In contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not diminished. Rather, it has redistributed itself in ways that have perplexed scientists, with declines in some areas and increases in others.

Holland observes: “From this study, we are learning just how Antarctic sea-ice redistributes itself, and also finding that the underlying mechanisms controlling Antarctic sea ice are completely distinct from those in the Arctic.”

The study’s other authors included: Edwin Gerber, an assistant professor at the Courant Institute; and Changhyun Yoo, a Courant post-doctoral fellow.

The research was supported by grants from the National Science Foundation’s Polar Programs (ANT-297 0732869) and Atmospheric and Geospace Sciences (AGS-1264195) divisions, NASA’s Polar Programs (NNX12AB69G), and the NYU Abu Dhabi Research Institute (G1204).

James Devitt | Newswise
Further information:
http://www.nyu.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>