Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

National Geographic unveils new phase of genographic project

05.12.2012
Combines powerful new technology, citizen science

The National Geographic Society today announced the next phase of its Genographic Project — the multiyear global research initiative that uses DNA to map the history of human migration.

Building on seven years of global data collection, Genographic shines new light on humanity's collective past, yielding tantalizing clues about humankind's journey across the planet over the past 60,000 years.

"Our first phase drew participation from more than 500,000 participants from over 130 countries," said Project Director Spencer Wells, a population geneticist and National Geographic Explorer-in-Residence. "The second phase creates an even greater citizen science opportunity — and the more people who participate, the more our scientific knowledge will grow."

This new stage of research harnesses powerful genetic technology to further explore and document the historic pathways of human migration. Based in part on a unique database compiled during the project's first phase, the next generation of the Genographic Project Participation Kit — Geno 2.0 — examines a collection of nearly 150,000 DNA identifiers that offers rich, ancestry-relevant information from across the entire human genome. In addition to learning their detailed migratory history, participants will learn how their DNA is affiliated with various regions in the world, and even if they have traces of Neanderthal or Denisovan ancestry.

Participants will receive their results through a newly designed, multi-platform Web experience at www.genographic.com. In addition to full visualizations of their migratory path and regional affiliations, participants can share information on their genealogy. Already, project results have led to the publication of 35 scientific papers reporting results such as the origin of Caucasian languages and the early routes of migrations out of Africa. Scientific papers have been published in PLOS, Human Genetics, and Molecular Biology and Evolution, among others. DNA results and analysis are stored in a database that is the largest collection of human anthropological genetic information ever assembled.

New to this phase, the project invites grant applications from researchers around the world for projects studying the history of the human species using innovative anthropological genetic tools.

A portion of the proceeds from the sale of Genographic Participation Kits funds project research and the Genographic Legacy Fund that supports community-led cultural conservation and revitalization initiatives among indigenous and traditional communities.

The Genographic Project remains nonmedical and nonprofit; all analysis results are placed in the public domain following scientific publication.

Full press kit is available at https://genographic.nationalgeographic.com/press/.

Colby Bishop | EurekAlert!
Further information:
http://www.genographic.com

More articles from Earth Sciences:

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>