Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NASA Laser Technology Reveals How Ice Measures Up

29.01.2014
New results from NASA's MABEL campaign demonstrated that a photon-counting technique will allow researchers to track the melt or growth of Earth’s frozen regions.

When a high-altitude aircraft flew over the icy Arctic Ocean and the snow-covered terrain of Greenland in April 2012, it was the first polar test of a new laser-based technology to measure the height of Earth from space.


NASA's Multiple Altimeter Beam Experimental Lidar flew over Southwest Greenland's glaciers and sea ice to test a new method of measuring the height of Earth from space.
Image Credit: NASA/Tim Williams


MABEL, short for "Multiple Altimeter Beam Experimental Lidar," serves as an ICESat-2 simulator.
Image Credit: NASA/Kelly Brunt

Aboard that aircraft flew the Multiple Altimeter Beam Experimental Lidar, or MABEL, which is an airborne test bed instrument for NASA's ICESat-2 satellite mission slated to launch in 2017. Both MABEL and ICESat-2's ATLAS instrument are photon counters – they send out pulses of green laser light and time how long it takes individual light photons to bounce off Earth's surface and return. That time, along with ATLAS’ exact position from an onboard GPS, will be plugged into computer programs to tell researchers the elevation of Earth's surface – measuring change to as little as the width of a pencil.

This kind of photon-counting technology is novel for satellites; from 2003 to 2009, ICESat-1’s instrument looked at the intensity of a returned laser signal, which included many photons. So getting individual photon data from MABEL helps scientists prepare for the vast amounts of elevation data they'll get from ICESat-2.

"Using the individual photons to measure surface elevation is a really new thing," said Ron Kwok, a senior research scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It's never been done from orbiting satellites, and it hasn't really been done much with airborne instruments, either."

ICESat-2 is tasked with measuring elevation across Earth's entire surface, including vegetation and oceans, but with a focus on change in the frozen areas of the planet, where scientists have observed dramatic impacts from climate change. There, two types of ice – ice sheets and sea ice – reflect light photons in different patterns. Ice sheets and glaciers are found on land, like Greenland and Antarctica, and are formed as frozen snow and rain accumulates. Sea ice, on the other hand, is frozen seawater, found floating in the Arctic Ocean and offshore of Antarctica.

MABEL's 2012 Greenland campaign was designed to observe a range of interesting icy features, said Bill Cook, MABEL's lead scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. With the photon counts from different surfaces, other scientists could start analyzing the data to determine which methods of analyzing the data allow them to best measure the elevation of Earth's surface.

"We wanted to get a wide variety of target types, so that the science team would have a lot of data to develop algorithms," Cook said. "This was our first real dedicated science mission."

The flights over the ocean near Greenland, for example, allowed researchers to demonstrate that they can measure the height difference between open water and sea ice, which is key to determining the ice thickness. MABEL can detect enough of the laser light photons that bounce off Earth surface and return to the instrument, and programs can then make necessary elevation calculations, Cook said.

"Part of what we're doing with MABEL is to demonstrate ICESat-2's instrument is going to have the right sensitivity to do the measurements," Cook said. "You can do this photon counting if you have enough photons."

In an article recently published in the Journal of Atmospheric and Oceanic Technology, Kwok and his colleagues showed how to calculate elevation from MABEL data, and do so over different types of ice – from open water, to thin, glassy ice, to the snow-covered ice.

"We were pretty happy with the precision," Kwok said. "The flat areas are flat to centimeter level, and the rough areas are rough." And the density of photons detection could also tell researchers what type of ice the instrument was flying over.

The contours of the icy surface are also important when monitoring ice sheets and glaciers covering land. The original ICESat-1 mission employed a single laser, which made it more difficult to measure whether the ice sheet had gained or lost elevation. With a single beam, when the instrument flew over a spot a second time, researchers couldn't tell if the snowpack had melted or if the laser was slightly off and pointed down a hill. Because of this, scientists needed 10 passes over an area to determine whether the ice sheet was changing, said Kelly Brunt, a research scientist at NASA Goddard.

"ICESat-1 was fantastic, but it was a single beam instrument," Brunt said. "We're more interested in repeating tracks to monitor change – that's hard to do."

ICESat-2 addresses this problem by splitting the laser into six beams. These are arranged in three pairs, and the beams within a pair are spaced 295 feet (90 meters), or just less than a football field apart. By comparing the height of one site to the height of its neighbor, scientists can determine the terrain's general slope.

Brunt and her colleagues used MABEL data from the 2012 Greenland campaign to try to detect slopes as shallow as 4 percent incline; their results will be published in the May 2014 issue of the journal Geoscience and Remote Sensing Letters. They counted only a portion of the photons, in order to simulate the weaker laser beams that ICESat-2 will carry. With computer programs to determine the slope, the researchers verified it against results from earlier missions.

"The precision is great," Brunt said. "We're very confident that with ICESat-2's beam pair, we can see slope."

And there are still more things for MABEL to measure. The instrument team is planning a 2014 summer campaign to fly over glaciers and ice sheets in warmer weather. "We want to see what the effects of the melt is," Cook said. "How do glaciers look if they're warmer, rather than colder?"

Kate Ramsayer
NASA's Goddard Space Flight Center, Greenbelt, Md.

Kate Ramsayer | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/new-nasa-laser-technology-reveals-how-ice-measures-up/#.UugjTbQo7IU

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>