Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New meteorite suggests that asteroid surfaces more complex than previously thought

21.12.2012
Scientists around the world work together on speedy space rock analysis

Meteorites that had fallen from an asteroid impact that lit up the skies over California and Nevada in April are showing scientists just how complex an asteroid surface can be.


These are some of the 77 fragments of the Sutter’s Mill meteorite fall that were collected in April 2012.

Credit: NASA/E. James

A new study published in Science this week by an international team of researchers describes the speedy recovery of the meteorites and reports that this space rock is an unusual example from a rare group known as carbonaceous chondrites, which contain some of the oldest material in the solar system.

The study of these meteorites and others like them could hold answers to unsolved mysteries about the origin of life on Earth as they contain molecules such as water and amino acids.

"We found that this meteorite is a 'breccia,' a mixture of different rocks that accumulated at the surface of a larger asteroid, and those surfaces can be more diverse than we thought before," said co-author Denton Ebel, chair of the Division of Physical Sciences at the American Museum of Natural History.

About eight months ago, several Doppler weather radars detected a hail of rocks following a fireball traveling at a record-breaking 28.6 kilometers per second (about 64,000 miles per hour) over the Sierra Nevada in northern California. An immediate search-and-recover mission, led by NASA Ames Research Center, the SETI Institute, and the University of California, Davis, resulted in the retrieval of 77 meteorites. The fragments, which were in pristine shape despite entering the atmosphere at a speed twice as fast as a typical meteorite fall, were collectively called the Sutter's Mill meteorite after the nearby historical site that started the California Gold Rush.

"From the loud sonic boom, we quickly realized that this was an asteroid several meters in size, the biggest object to hit over land since the impact of asteroid 2008 TC3 in the north of Sudan in 2008," said lead author and meteor astronomer Peter Jenniskens of NASA Ames and SETI. "That asteroid proved to be a mixed bag of different types of meteorites, and we realized it would be very interesting to find out how diverse the Sutter's Mill meteorites were."

Several fragments were sent to laboratories around the world for simultaneous analysis of the meteorite's mineralogy and structure. The Sutter's Mill meteorite was classified as a CM chondrite, C standing for carbonaceous—high in carbon content—and M standing for the group's type specimen, the Mighei meteorite that fell in Ukraine in the late 1800s.

Ebel received five Sutter's Mill meteorites to study using x-ray computed tomography (CT), an imaging technique that takes pictures of the inside of a specimen without destroying it. The Museum's scanner takes more than 1,000 x-ray images of the object as it rotates inside of the machine. The data collected from these x-rays are then converted by computers to form a 3-D image of the specimen's interior, one slice at a time, to understand the components of the meteorite.

"In the same way that medical tomography, called CAT scanning, is used to image the interior of the human body, CT scanning in a research laboratory allows us to obtain images of the interiors of solid objects, but with a much higher resolution," Ebel said. "This is a fundamentally important tool not just for looking at rocks but for curating them and figuring out whether anything interesting is inside."

CT scans at the Museum, and at the University of California, Davis in an effort led by cosmochemist Qing-Zhu Yin, revealed that no two Sutter's Mill meteorites are the same. The meteorites contained angular pieces of different composition and density. They showed diversity on millimeter scale.

"This was the first time that a CM chondrite was found to be clearly a breccia," Yin said. "The rocky fragments came together following impacts on the parent asteroid, which implies that this meteorite originated from near its surface."

Analyses performed using different techniques at other institutions were in agreement: the mineralogy and other geochemical features of these fragments are unexpectedly diverse and complex. This suggests that the surface of the asteroid that spawned the CM chondrites, their "parent body," is more complex than previously thought.

"This meteorite is special because it records many collisional processes and mixing that we, oddly, don't see very often," Ebel said. "Maybe the real question is 'why don't we see more of this?' It could be that most of the samples we've worked with in the past didn't hold up very well as they entered the atmosphere. Or that we're just seeing a small segment of what's really out there because we don't have meteorite records of what fell to the Earth thousands or millions of years ago. We still have a lot of work to do to figure out what's really going on in the asteroid belt."

Kendra Snyder | EurekAlert!
Further information:
http://www.amnh.org

More articles from Earth Sciences:

nachricht Volcanic eruption masked acceleration in sea level rise
26.08.2016 | National Science Foundation

nachricht Biomass turnover time in ecosystems is halved by land use
23.08.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>