Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared NASA Data Shows Cyclone Haruna Being Blown Away

26.02.2013
Ex-cyclone Haruna is expected to dissipate in the Southern Indian Ocean under increasing wind shear in the next day or two. Infrared imagery from a NASA satellite shows that Haruna is being blown apart several hundred miles away from La Reunion Island.

Wind shear has been a problem for Haruna for days. A night-time image from the VIIRS instrument aboard NASA-NOAA's Suomi NPP satellite taken on Feb. 21 at 22:23 UTC showed the eye of Cyclone Haruna had elongated from northwest to southeast as a result of wind shear. For more information about the Suomi NPP satellite, visit: www.nasa.gov/npp.


The MODIS instrument aboard NASA's Aqua satellite captured this visible image of Tropical Storm Haruna on Feb. 22 at 1105 UTC (6:05 a.m. EST). Credit: NASA Goddard MODIS Rapid Response Team

On Sunday, Feb. 24, Haruna was centered near 27.2 south and 54.1 east, about 370 nautical miles (425.8 miles/682.5 km) south-southwest of La Reunion Island. Haruna's maximum sustained winds were near 40 knots (46 mph/74 kph) and the storm was moving to the east-southeast at 16 knots (18.4 mph/29.6 kph). An infrared image of Haruna captured by the Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Terra satellite showed the bulk of the clouds and rainfall were pushed south of the center. The storm was being battered by wind shear and that was pushing the main precipitation away from the center and elongating the storm.

On Feb. 24 at 2141 (4:41 p.m. EST), an infrared image from the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite showed former Cyclone Haruna blowing apart several hundred miles south of La Reunion Island. AIRS showed that cloud top temperatures had warmed, indicating that cloud heights had dropped and the storm no longer had the strength in uplift that it previously had. For more information about AIRS, visit: http://airs.jpl.nasa.gov/.

The Joint Typhoon Warning Center issued their final advisory on the cyclone on Feb. 24. By Feb. 25 at 0000 UTC (7 p.m. EST/U.S. on Feb. 24) Tropical Cyclone Haruna had maximum sustained winds near 35 knots (40.2 mph/64.8 kph). It was centered near 27.0 south latitude and 57.5 east longitude, about 360 nautical miles south-southwest of La Reunion Island and was moving to the east-northeast at 15 knots (17.2 mph/27.7 kph). Haruna is being battered by wind shear and is expected to dissipate over the next couple of days.

Text Credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Haruna.html

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>