Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Food Chain May Be Altered Due to Fossil Fuel Remnants in Glaciers

One of North America's largest icefields is the laboratory for a study revealing that the remnants of fossil fuels in glaciers may be changing the source of food for marine life down the food chain.

University of Alaska Southeast Associate Professor Eran Hood is the second author of the study, to be published in the international journal Nature Geoscience in March 2012 and published on-line this week. "When we look at the marine food webs today, we may be seeing a picture that is significantly different from what existed before the late-18th century," said first author Aron Stubbins of the Skidaway Institute of Oceanography.

Hood led the fieldwork on glaciers in Juneau, Alaska where visiting scholar-scientists from throughout the Lower 48 sampled snow, ice melt, and glacier runoff. The organic carbon from these water and snow samples was isolated and carbon dated. “We analyzed its molecular chemical structure,” said Hood. “The carbon fingerprint we found indicated aerosols derived from the combustion of fossil fuels are an important source of organic matter on glacier surfaces and also in glacier outflow streams.”

The scientists said glaciers like the Mendenhall offer ideal evidence of soot from carbon emissions. This "black carbon," darkens glacier surfaces and increases their absorption of light and heat. The carbon can also be exported to ecosystems downstream from glaciers where it can be metabolized and become part of the food web.

"These findings show that glaciers like Mendenhall can provide us with novel information about how humans are altering the composition of the atmosphere as a result of burning biomass and fossil fuels" said Hood. "The fact that we see this human-derived carbon signature in Alaskan glaciers also indicates that we still do not fully appreciate the post-industrial changes in the earth's surface biogeochemical cycles."

Glaciers and ice sheets together represent the second largest reservoir of water on the planet, and glacier ecosystems cover ten percent of the Earth, yet the carbon dynamics underpinning those ecosystems remain poorly understood. "Improving our understanding of glacier biogeochemistry is of great urgency, as glacier environments are among the most sensitive to climate change and the effects of industrial pollution,” emphasized Rob Spencer of the Woods Hole Research Center, another author on the study.

A warming climate will increase the outflow of the glaciers and the accompanying input of dissolved organic material into the coastal ocean. This will be most keenly felt in glacial coastal regions with the highest levels of ice loss including the Gulf of Alaska, Greenland and Patagonia.

The title of the study is “Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers.” In addition to Stubbins and Spencer, Hood’s fellow collaborators on the project were Andrew Vermilyea from the University of Alaska Southeast; Peter Raymond and David Butman from Yale University; George Aiken, Robert Striegl and Paul Schuster from the U.S. Geological Survey; Rachel Sleighter, Hussain Abdulla and Patrick Hatcher from Old Dominion University; Peter Hernes from the University of California-Davis; Durelle Scott from Virginia Polytechnic Institute and State University.

More information and a slideshow of photographs by Hood can be found in the U.S. National Science Foundation on-line article, “Scientists Unlock Record of Ecosystem Changes Frozen in World's Glaciers”:

Eran Hood
Associate Professor, Department Chair Environmental Science & Geography Program
University of Alaska Southeast
Juneau, Alaska
(907) 796-6244

Eran Hood | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>