Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black carbon - element of uncertainty in climate prediction

19.04.2013
The burning of fossil and renewable fuels affects our climate through the production of soot, which can act either warming or cooling. It is difficult for many reasons to take stock of black carbon particles, as shown in a recent article in the journal Science.

In recent months climate scientists have been surprised by a scientific publication. An American research team came to the conclusion that soot’s contribution to global warming is about twice as high as previously thought.


Picture: The smoke from a fire in extremely dry vegetation in the Great Victoria Desert, Australia on 17 January 2013 is nearly black. A bright cumulus cloud rises from the top of the plume. Picture: NASA/C. HADFIELD

Soot particles are formed from the burning of fossil fuels such as coal and oil and also from the use of biomass fuels such as wood. The chemist Tami Bond and her research team estimate that black carbon, the scientific term for soot particles, is more harmful to climate than the greenhouse gas methane.

How such large differences in the assessment of the effect of soot on climate were arrived at is described in a recent publication in the scientific journal Science. Meinrat O. Andreae, Director at the Max Planck Institute for Chemistry in Mainz, and his Californian colleague Veerabhadran Ramanathan explain the global and regional climate effects of the black particles. Soot is the biggest absorber of solar radiation in the earth’s atmosphere.

“Unlike greenhouse gases, black carbon is not a single chemically defined substance with constant physical properties. This alone makes it difficult to precisely determine the impact of black carbon on climate,” says the climate researcher from Mainz, Prof. Andreae. “One reason why there are such large discrepancies in the estimates is the existence of so-called brown carbon.” These brown carbon particles are produced from the burning of biomass and from chemical reactions in the atmosphere. Brown carbon absorbs light and heat exactly like black carbon - something that has been previously ignored in climate models. Instead, it was assumed that brown carbon cooled the climate because the particles reflected more sunlight back into the space than they absorbed in the atmosphere.

To budget the effects of soot on climate all mechanisms must be known

A further element of uncertainty lies in the interplay of the cooling and warming properties of soot. Soot particles not only absorb heat and release it to the earth’s atmosphere extremely well. They also serve as nuclei for the condensation of moisture, which leads to cloud formation. And, clouds in turn reflect the rays of the sun. To determine a correct climate budget for soot, it is necessary to know all the climate relevant mechanisms - cooling and warming.

The research team around the American scientist, Bond, has proposed just such a budget. They have synthesized all available model results and observations and calculated the amount of solar energy that the black particles absorb and therefore can release to the climate system. This so-called radiative forcing of 1.1 watt per cubic meter is twice as high as the value in a study from the United Nations Environment Program (UNEP) and the World Meteorological Organization (WMO), which has been used for predictions of climate warming. For Bond and her colleagues soot is more climate relevant than previously assumed.

How can this big difference to earlier calculations be explained? Andreae and his colleague Ramanathan compare different approaches to derive the radiative forcing resulting from the absorption of light by soot. The climate scientist Ramanathan determined this from absorption data from satellites and from 140 ground stations. The Bond study presents a substantially smaller value derived from emission inventories and atmospheric models, which they then scale up to get to the values from experimental data. From this, Andreae and Ramanathan conclude that in most climate predictions either an important source for soot is not taken into consideration, or that data from estimations of global emissions is not reliable enough.

Soot makes regional climate predictions more uncertain

The uncertainties due to the soot factor are even greater at the regional scale - for example in predictions of precipitation. This comes from the fact that soot particles can have opposing effects on cloud formation. In small clouds the precipitation efficiency is reduced, for large clouds it is increased. In the air over the Indian Ocean soot works like a sun umbrella, thus the sea water is warmed less and less water evaporates. As a result researchers fear that, for example, the monsoon rains in south Asia will weaken - a region in which biomass is increasingly burned.

In addition the absorption of solar radiation by soot causes heat gradients in the atmosphere which cause changes in air circulation. This appears to be responsible for the already observed northward shift of the tropical belt.

If the radiative absorption by soot in previous models is really so markedly underestimated as Bond’s American research team claim, then regional climate effects need to be reevaluated, according to Andreae and Ramanathan. This in turn would require accurate observations of the climate system, from satellite data to microchemical measurements of aerosols.

Yet, the question remains, whether all the effort to reduce the emission of soot is even worth the effort. The burning of fossil fuels releases compounds such as sulfur dioxide that cool our climate. A complete budget for our climate is therefore made even more difficult.

Why we should nevertheless make every attempt to reduce soot emissions as much as possible lies in how harmful it is for human health. Every year an estimated 3.5 million people die from air polluted with soot and related small aerosol particles in households, especially in developing and emerging countries where meals are often still cooked over open fires.

Original Publication:
“Climate’s Dark forcings”: Meinrat O. Andreae and Veerabhadran Ramanathan, Science, 19 April 2013: Vol. 340 no. 6130 pp. 280-281 DOI: 10.1126/science.1235731

Contact:
Prof. Dr. Meinrat O. Andreae
Max Planck Institute for Chemistry, Mainz, Germany
Phone: + 49 (0)6131/ 305-6000
E-Mail: m.andreae@mpic.de

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/en/top-navigation/home.html

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>