Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach allows past data to be used to improve future climate projections

30.11.2012
Climate scientists are still grappling with one of the main questions of modern times: how high will global temperatures rise if the atmospheric concentration of carbon dioxide doubles.
Many researchers are turning to the past because it holds clues to how nature reacted to climate change before the anthropogenic impact. The divergent results of this research, however, have made it difficult to make precise predictions about the impact of increased carbon dioxide on future warming.

An international team of scientists have evaluated previously published estimates and assigned them consistent categories and terminology. This process should assist in limiting the range of estimates and make it easier to compare data from past climate changes and projections about future warming. The group has presented its new method in the current edition of the journal Nature.

The research group summarized, classified and compared data from more than 20 studies to make a potential prognosis about the expected future rise in the world’s temperature. In these palaeoclimate studies climate sensitivity has been reconstructed on the basis of data derived from ice and sediment core. Climate sensitivity is a key parameter in the study of climate change. It describes the rise of the mean temperature of the earth’s surface due to changes in the climate system. Specifically, its value represents the increase in global temperatures calculated by climate models, if the carbon dioxide content in the atmosphere doubles. Here, models were initialised with pre-industrial carbon dioxide concentrations.

The team was then faced with the challenge of comparing the assembled studies. Each study spoke of “climate sensitivity”, but not all took the same factors into account. “We had to elaborate all the different assumptions and uncertainties, such as which studies look exclusively at carbon dioxide and which considered other greenhouse gases such as methane or the effect of reflection, the so called albedo, from ice surfaces. Only then could we compare the data. We also calculated the climate sensitivity data if we only considered greenhouse gases like carbon dioxide or added in albedo”, explained Dr Peter Köhler, one of the article’s main authors and climatologist at the Alfred Wegener Institute for Polar and Marine Research, part of the Helmholtz Association.

The research group was able to use its new method to differentiate ten different kinds of climate sensitivity. In a second phase of the project, they then worked on devising consistent terminology and concrete definitions. The new classification system should prevent future researchers from publishing widely divergent estimates of climate sensitivity based on differing assumptions. “Ideally, it should be clear from the start of a study what kind of climate sensitivity is being addressed. The factors considered by the researchers to be driving temperature change should be clear from the language used. Our terminology offers a conceptual framework to calculate climate sensitivity based on past climate data. We hope that this will improve evaluation of future climate projections”, adds Köhler.

This work represents a significant advance for climatology. It is the first summary of what scientists have been able to reconstruct about climate sensitivity based on data from the past 65 million years and the assumptions that were behind the data. It also demonstrates that the climate forecasts in the IPCC reports agreed with the estimates of how nature has reacted to changes in the climate through the course of the earth’s history.

The research team has not, however, achieved one of its goals. “We had hoped to limit the range of current assumptions about climate sensitivity. In its last report, the IPCC summarised that the global temperature would rise 2.1 to 4.4 degrees C if the atmospheric carbon dioxide level rises to double the pre-industrial values. As it turns out, our climate sensitivity values are currently within this same range” says Dr Köhler.

Further open questions will have to be addressed in order to obtain more precise figures. Scientists know, for example, that climate sensitivity depends on the predominant background climate at the time, i.e. whether climate is in an ice age or a warm age. But exactly how this background climate impacts climate sensitivity still has to be answered. The climatologists behind this study hope that the new conceptual framework will push further research in this direction.

The article is the outcome of a three-day colloquium held last year at the Royal Netherlands Academy of Arts and Sciences in Amsterdam, attended by more than 30 specialists in the field.
Notes for Editors: The original article is entitled “Making sense of palaeoclimate sensitivity” and appeared in the 29 November issue of Nature (doi: 10.1038/nature11574), Vol 491, pages 683-691. For further information, contact either Dr Peter Köhler Tel. +49(0)471 4831-1687 (e-mail: Peter.Koehler@awi.de) or Kristina Bär, Communications and Media, Tel. +49(0)471 4831-2139 (e-mail: kristina.charlotte.baer@awi.de). Please find printable images on: http://www.awi.de/en/news/press_releases/

The Alfred Wegener Institute conducts research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of eighteen research centres in the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de/en/news/press_releases/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>