Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fracking' Mobilizes Uranium in Marcellus Shale

26.10.2010
Findings raise new concern: could uranium show up in groundwater?

Scientific and political disputes over drilling Marcellus shale for natural gas have focused primarily on the environmental effects of pumping millions of gallons of water and chemicals deep underground to blast through rocks to release the natural gas.

But University at Buffalo researchers have now found that that process -- called hydraulic fracturing or "fracking"-- also causes uranium that is naturally trapped inside Marcellus shale to be released, raising additional environmental concerns.

The research will be presented at the annual meeting of the Geological Society of America in Denver on Nov. 2.

Marcellus shale is a massive rock formation that stretches from New York through Pennsylvania, Ohio and West Virginia, and which is often described as the nation's largest source of natural gas.

"Marcellus shale naturally traps metals such as uranium and at levels higher than usually found naturally, but lower than manmade contamination levels," says Tracy Bank, PhD, assistant professor of geology in UB's College of Arts and Sciences and lead researcher. "My question was, if they start drilling and pumping millions of gallons of water into these underground rocks, will that force the uranium into the soluble phase and mobilize it? Will uranium then show up in groundwater?"

To find out, Bank and her colleagues at UB scanned the surfaces of Marcellus shale samples from Western New York and Pennsylvania. Using sensitive chemical instruments, they created a chemical map of the surfaces to determine the precise location in the shale of the hydrocarbons, the organic compounds containing natural gas.

"We found that the uranium and the hydrocarbons are in the same physical space," says Bank. "We found that they are not just physically -- but also chemically -- bound.

"That led me to believe that uranium in solution could be more of an issue because the process of drilling to extract the hydrocarbons could start mobilizing the metals as well, forcing them into the soluble phase and causing them to move around."

When Bank and her colleagues reacted samples in the lab with surrogate drilling fluids, they found that the uranium was indeed, being solubilized.

In addition, she says, when the millions of gallons of water used in hydraulic fracturing come back to the surface, it could contain uranium contaminants, potentially polluting streams and other ecosystems and generating hazardous waste.

The research required the use of very sophisticated methods of analysis, including one called Time-of-Flight Secondary Ion Mass Spectrometry, or ToF-SIMS, in the laboratory of Joseph A. Gardella Jr., Larkin Professor of Chemistry at UB.

The UB research is the first to map samples using this technique, which identified the precise location of the uranium.

"Even though at these levels, uranium is not a radioactive risk, it is still a toxic, deadly metal," Bank concludes. "We need a fundamental understanding of how uranium exists in shale. The more we understand about how it exists, the more we can better predict how it will react to 'fracking.'"

Bank conducted the experiments with UB Department of Geology graduate students Thomas Malizia and Lauren Fortson, and Lisa Andresky, an undergraduate student from Slippery Rock University in Pennsylvania. Andresky worked in Bank's lab during the summer while on a National Science Foundation-funded Research Experience for Undergraduates in UB's Ecosystem Restoration through Interdisciplinary Exchange (ERIE) program.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu/news/11885

More articles from Earth Sciences:

nachricht Biomass turnover time in ecosystems is halved by land use
23.08.2016 | Alpen-Adria-Universität Klagenfurt

nachricht Diversity of habitats at natural oil seeps
22.08.2016 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>