Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What makes our brains so flexible - Bernstein Award 2012 for Tim Vogels

On 12 September, the Federal Ministry for Education and Research (BMBF) conferred this year's Bernstein Award for Computational Neuroscience.

With up to 1.25 million euros, it is one of the most highly remunerated award for young scientists worldwide. The award enables outstanding young researchers to establish their own group at a German research institution.

This year's awardee Tim Vogels will establish his research group at the Humboldt-Universität zu Berlin and the Bernstein Center Berlin. The award ceremony took place during the annual meeting of the Bernstein Network Computational Neuroscience in Munich.

How is it possible that, in the continuous stream of sensory information constantly bombarding us, we can flexibly direct our attention to one out of many information sources and neglect everything else? Just imagine a big orchestra, with almost a hundred musicians. In the middle of a piece, we can specifically focus our attention on the tuba, without letting ourselves be distracted by the first violinist’s virtuosic solo. And just a moment later, we can listen to the oboe.

This flexibility and the brain mechanisms on which it is based are the subjects of Tim Vogels' research. His tools are theoretical models. With their help, he is able to simulate neural networks in a computer and use them as virtual "guinea pigs" to formulate new hypotheses, which, in turn, can provide testable predictions for neurobiological experiments. He is interested both in slow changes that are typically associated with learning processes as well as in very short-term changes that allow us to quickly change our focus of attention.

Vogels’ previous research has already provided a basis for exploring these questions. Thanks to Vogels’ and others’ models, we know today that the neural networks in the brain maintain their sensitive balance by a well-tuned combination of excitatory and inhibitory stimuli. Vogels believes that this is the key to the flexible switching mechanisms in the brain. "I imagine that excitatory stimuli and their inhibitory counterparts interact with each other like guest and doorman," said Vogels. "The qualities of both will determine the decision of which guest – which environmental stimulus – is allowed to pass and which not. But also additional external factors may play a role, such as, metaphorically speaking, whether the establishment is full already, or how many friends the guest is bringing along."

Vogels will now pursue these and other questions in Berlin, in cooperation with local scientists of the Bernstein Center and the Humboldt-Universität, in particular Michael Brecht, Henning Sprekeler, Richard Kempter and Susanne Schreiber.

Tim Vogels initially studied physics at Technische Universität Berlin. After his pre-diploma, a Fulbright scholarship offered him the opportunity to continue his studies at Brandeis University in Boston, USA. He received his PhD in 2007 in the laboratory of Larry Abbott, a pioneer of computational neuroscience and the author of one of the most widely read textbooks on the subject. After a postdoctoral stay with Rafael Yuste at Columbia University, he became a Marie Curie Reintegration Fellow in 2010, in the laboratory of Wulfram Gerstner at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

The Bernstein Award is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. Namesake of the network is the German physiologist Julius Bernstein (1835-1917).


Tim Vogels
Laboratoire de Calcul Neuromimétique
École Polytechnique Fédérale, Station 15
1015 Lausanne
phone: +41 21 693 5265

Dr. Simone Cardoso de Oliveira | idw
Further information:

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>